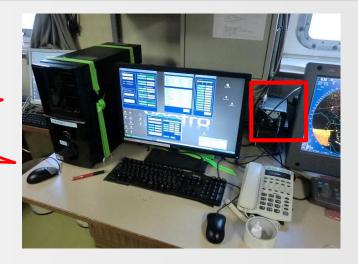
汐路丸のGPS障害に関する研究

東京海洋大学 菊地 錬

汐路丸について

主要目


竣工	S62.2.10
船質	銀
航行区域	近海
全長	49.93m
垂線間長	46.00m
型幅	10.00m
型深	3.80m
喫水	3.00m
総トン数	425トン
最大搭載人員	62名

- > 東京海洋大学が保有する練習船

背景と目的

汐路丸でGPS障害が多発

航海機器への影響

実習・実験への影響

原因を究明するために調査開始

GPS/GNSSは妨害波の影響を受けやすい

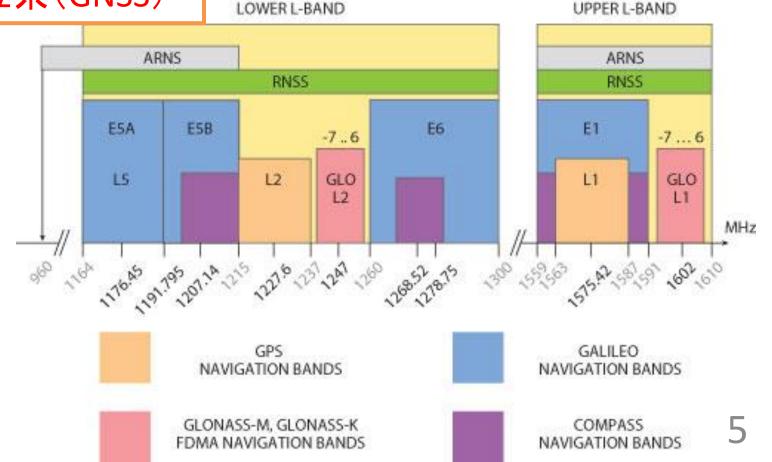
30W

> 信号の受信電力がとても小さい

高度20,000km

 $10^{-16} W$

GPS/GNSSの無線スペクトルに妨害波が入り込むと 受信機は信号を適切に処理できない

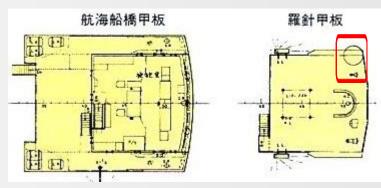

GPSの他にも、

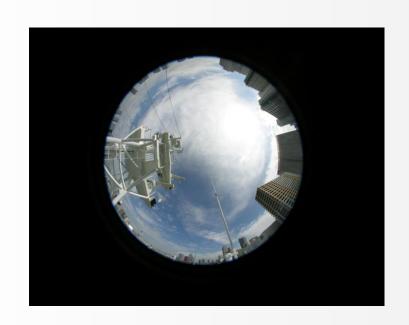
- •GLONASS(露)
- Galileo (EU)
- •BeiDou(中)
- •QZSS(日)

衛星測位系(GNSS)

それぞれが2周波、3周波で信号を送信

障害を受けたとしても 他システム、L2帯やL5帯が使える可能性


汐路丸の調査

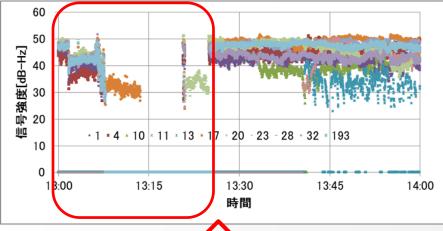

過去の実験航海のデータ解析

	7月 10月	
期間	7/26 7:00 ~ 8/1 14:00	10/15 12:00 ~ 10/18 17:00
受信機	Trimble NetR9	Trimble NetR9, Javad DELTA
アンテナ	Trimble Zephyr ジオデティック2	Trimble Zephyr ジオデティック2
航行海域	勝どき(スラスタ故障により)	勝どき ~ 館山
取得間隔	1Hz	1Hz

汐路丸の調査 ーアンテナ設置位置

調査結果 その1

JST	7/30	10/15	10/16	10/17
9:00	X	1	0	0 5
10:00	X		0	X
11:00	0		0	0
12:00	0	0	0	0
13:00	0	0	0 3	0
14:00	0	0 2	X	0
15:00	0	X	X	0
16:00	0	X	0	0
17:00	0	0	0	0

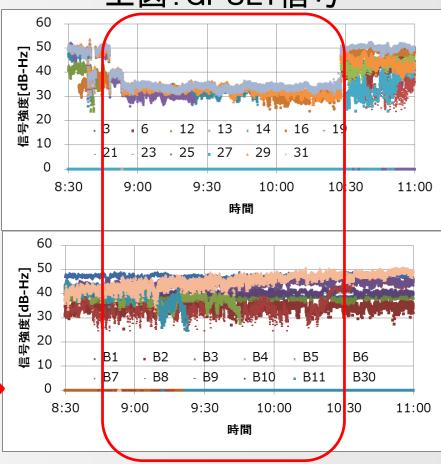

番号	時間	場所
1	1h30min	勝どき
2	1h	勝どき
3	25min	勝どき
4	3min	勝どき
5	5min	館山湾

- ▶ 障害が発生する時間帯は午前中から夕方に集中
- 障害の発生時間は長かったり、短かったり
- ▶ 障害が起きる海域はばらばら

調査結果 その2

○信号が受信できなくなる (3番)

GPSL1信号



全GNSSの信号が受信不能に

影響を受けないGNSSの信号も

〇信号強度が数十[dB-Hz]落ちる (1番, 2番, 4番, 5番)

上図:GPSL1信号

下図:BeiDouB1信号

調査結果 その3

	1番	2番	4番	5番
GPS	L1, L2P(Y)	L1, L2P(Y)	L1, L2P(Y)	L1, L2P(Y)
GLONASS	G1	G1	G1	G1 G2
Galileo	E1 <mark>,E5b,E5AB</mark>	E1		E1
BeiDou				
QZS	L1	L1	L1	L1 10

調査結果まとめ

障害の、

- ・発生する時間帯(夜には発生しない)
- · 持続時間
- ·発生海域
- ・影響を受けるGNSSの種類、周波数帯

に規則性が見られない問題が浮上

妨害源を予想することが難しい

汐路丸の設備調査

コンパスデッキにアンテナ・受信機を設置

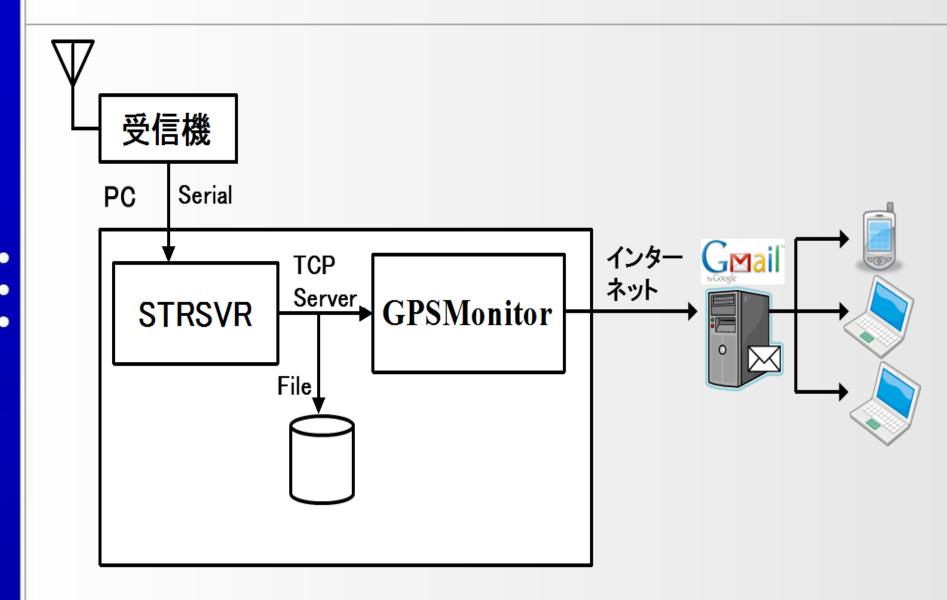
船内設備の電源を順番に投入

GNSSに障害が出たら電源を落としてみる

GNSSに障害がなくなれば妨害源特定

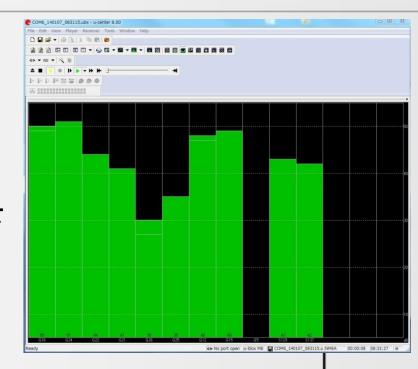
船内設備調査

JST	機器	動作	影響
10:19	海洋ブロードバンド	OFF	なし
10:28	WEBカメラ	OFF	なし
10:30	海洋ブロードバンド	ON	なし
10:45	WEBカメラ	ON	なし
10:50	サテライトコンパス	OFF	なし
10:55	サテライトコンパス	ON	なし
10:57	AIS	OFF	なし
11:00	AIS	ON	なし
11:01	VHF	OFF	なし
11:05	VHF	ON	なし


受信機	アンテナ
Trimble_NetR9	Zephyr
Ublox_5T	Tallysman
Furuno	Ublox
NovAtel_OEM6	703-GGG

異常発生時に調査する必要がある

GPS異常検知システム


システムの構成

異常の検知

信号強度の監視

NMEA GPGSVセンテンス 衛星の信号強度が35[dB-Hz]以下 →メール送信

\$GPGSV

ヘッダ 全メッセージ数 メッセージ番号 受信可能衛星数

衛星番号

仰角 方位角

最大4回繰り返される

信号強度

強度 チェックサム

デモ動画

調査手法の検討

本システムは汐路丸に常設する予定

小型のスペクトラムアナライザを購入

メールを受信した後、汐路丸に向かう

スペクトルアナライザを使用し船内巡回

妨害源の近くほど伝搬損失が少ないので強力 その周辺の設備を妨害源と予測

電源を落とす

GPSの信号強度が回復すれば妨害源の特定

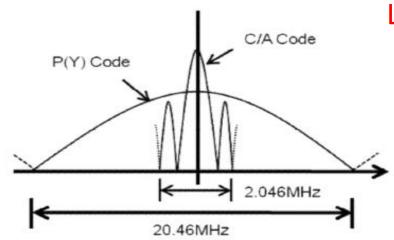
まとめと今後の課題

汐路丸のGPS障害について調査を行った.

- •障害はGPS L1信号のみではなく、 他GNSS・他周波数帯の信号にまで被害が及んでいた。
- •障害が発生する海域、障害が発生する時間帯•持続時間に 規則性がないことを確認した。

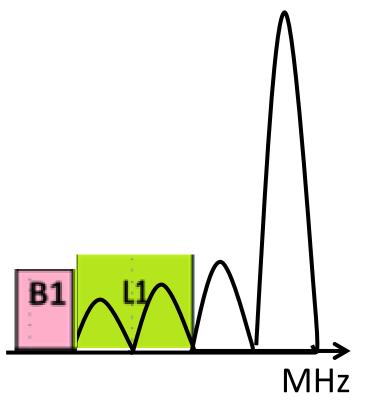
GPS異常を自動検知し、通知をするシステムを導入した.

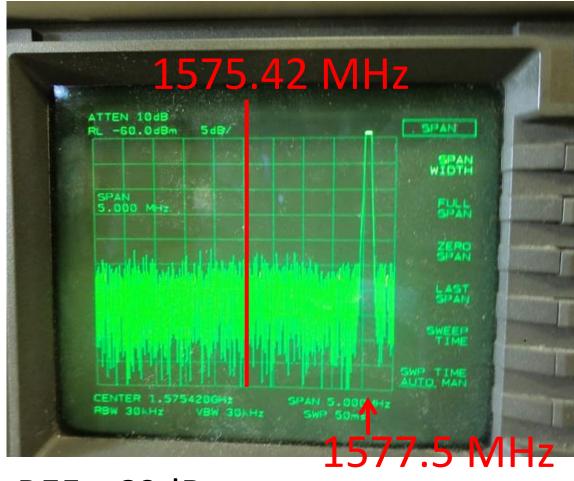
今後の課題


GPS異常の原因はわからないままなので、 原因追究に向けて引き続き調査を行う.

ご清聴ありがとうございました

L2P(Y)が落ちてL2C信号には異常がおきない理由
 L1信号にはP(Y)コードも乗っている。
 L1信号が落ちたらL2P(Y)信号も落ちてしまう ← 民間の受信機


$$S_{L1}(t) = \sqrt{2P_C}D(t)x(t)\cos(2\pi f_{L1}t + \theta_{L1})$$
 $+\sqrt{2P_{Y1}}D(t)y(t)\sin(2\pi f_{L1}t + \theta_{L1})$
 $\sqrt{2P_C},\sqrt{2P_{Y1}},\sqrt{2P_{Y2}}$:振幅
 $D(t)$: 航法データ
 $x(t),y(t)$: スペクトル拡散コード
 f_{L1} : 搬送波周波数


1575.42MHz

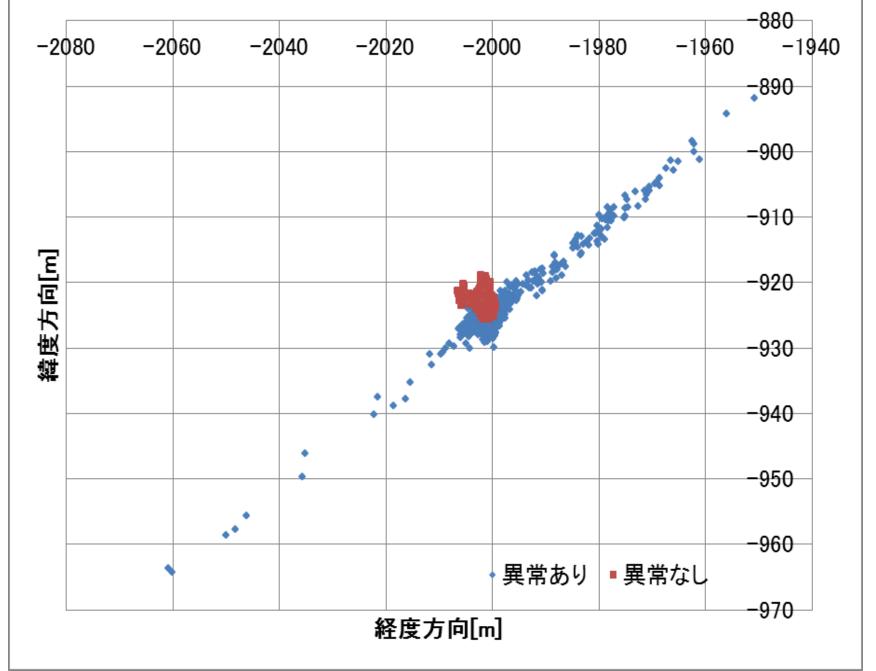
L2P(Y)信号は軍用の信号

昔にPコードが流出し、受信できる L1信号経由で受信している

REF:-60dBm

CENTER: 1575.42MHz

SPAN: 5MHz


既存の受信機では妨害に対する耐性はない

→ 妨害源を特定する必要がある

軍用のものは妨害を前提とした設計

→ アンテナ 複数のアンテナ素子 信号の位相や利得を調整 妨害源に利得がない方向を作る



- ➤ 意図的→GPSジャマー
- ▶ 偶発的→インマルサット

(上:1625-1646.5 MHz

下:1524—1545.5 MHz

使用周波数帯が違っても電波が漏れ出て隣接周波数帯に影響

- ・テレビ
- •携帯電話基地局電波
- •WEBカメラ
- 海洋ブロードバンド → Kuバンド(上:14GHZ、

下:15GHz)

