Performance Evaluation and A New Disaster Prevention System of Precise Point Positioning at Sea

ION GNSS+ 2016

Sept. 12th-16th, 2016

Portland, Oregon

Eiko Saito, Nobuaki Kubo and Kazumasa Shimoda
Tokyo University of Marine Science and Technology
Japan agency of Maritime Education and Training for Seafarers

Table of Contents

- Motivation
- Objective
- High Accuracy of Single Positioning
- Comparison of Sea Buoys and Ships
- Experiments
- Results and Discussion
- A New Disaster Prevention System at Sea
- Conclusion

Motivation

Sea Buoys

Previous Research:

Teruyuki Kato, "GNSS buoy array in the ocean for natural hazard mitigation", 2015 AGU Fall Meeting, 2015.12.

Limitation of Sea Buoys:

Construction Costs and Period / Power Ensure / Maintenance

Improvements in This Research:

Tsunami Detection using Ships

- →1 Increase of Analysis Data
 - 2 Observation of Higher Accuracy Sea Level Fluctuations

Motivation

Tsunami Detection using Ships

Previous Research:

Ryuta Nakasone and Nobuaki Kubo, "New Approach for Tsunami Detection Based on RTK-GNSS Using Network of Ships", ION GNSS 2012, 2012.9.

Limitation of Previous Research:

- Analysis of Anchoring Ships in the Bay
- Consideration of the Application in Ships using PPP(Precise Point Positioning)

Objective

Our Objective is to verify the performance on board and consider new utilization of PPP.

- 1. We verified the performance of PPP on the ship.
- 2. We proposed a disaster preventing system using ships in the anchorage instead of sea buoys and applying PPP.

High Accuracy of Single Positioning

• It requires accurate estimation of various errors.

Various Errors	Features
①Precise Orbit and Clock	Precise orbit provides the satellite position accuracy of less than 10cm. Precise clock provides the clock correction accuracy of less than 0.1ns (about 3cm).
②Ionosphere Free Combination	We apply an appropriate coefficient to dual-frequency carrier phase. It is possible to clear the large part of the impact of the ionosphere.
③Global Ionosphere Distribution Map (IONEX)	It is possible to correct by describing the VTEC (Vertical Total Electron Content) of the ionosphere in the form of two-dimensional grid.
4 Troposphere Delay Estimation	We perform the calculation by the model. Troposphere delay in zenith direction is to use the expression of Saastamoinen.
⑤Satellite Code Bias	Different types of code and frequency cause the different hardware bias. We have to consider these bias.
6 Position Calculation	We used the method of least squares.

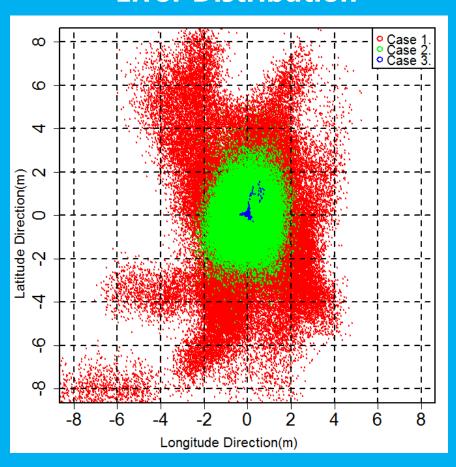
High Accuracy of Single Positioning

Receiver	Trimble NetR9
Antenna	Trimble Zephyr Geodetic 2
Satellites	Case 1. and Case 2. GPS,QZSS Case 3. GPS,QZSS,GLONASS
Frequencies	Dual-Frequency (L1 and L2)
Experimental Hour	24 hours
Positioning Interval	1 Hz
Elevation Mask	15 deg
CN(Carrier to Noise) Threshold	30 dB
Precise Orbit and Clock	Case 1. and Case 2. QZSS Final Case 3. MADOCA real-time product
Ionosphere Estimation	Case 1. Klobuchar Model Case 2. Ionosphere Free Case 3. PPP

Case 1. and Case 2. used only pseudo-range (code).

Experimental Place:

The Fixed Point of Land at our university



High Accuracy of Single Positioning

Relative Positioning Solution: Post-Processed RTK(Real Time Kinematic)

Base Station: The Rooftop of Our University (Tokyo, Japan)

Horizontal Positioning Error Distribution

Positioning Accuracy

		Latitude [m]	Longitude [m]	Height [m]
Case 1.	Standard Deviation	3.148	1.867	8.480
Klobuchar	Average	-0.326	-0.163	2.962
Model	RMS	3.165	1.874	8.982
Case 2. Ionosphere free	Standard Deviation	0.639	0.871	1.799
	Average	-0.059	-0.045	0.255
	RMS	0.642	0.873	1.817
Case 3. PPP	Standard Deviation	0.057	0.071	0.121
	Average	0.016	-0.003	0.111
	RMS	0.060	0.071	0.164

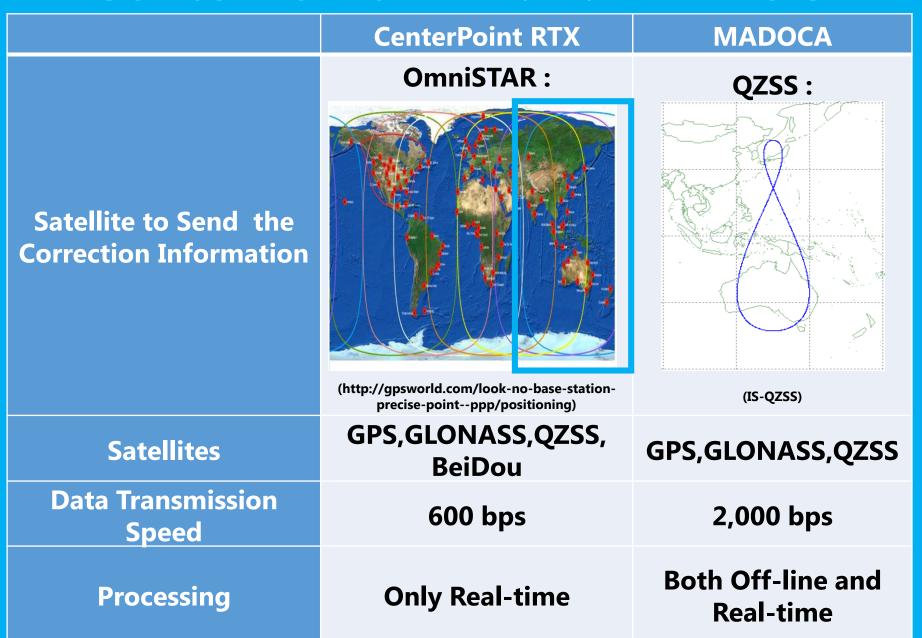
Comparison of Sea Buoys and Ships

	Sea Buoys	Ships
GPS/GNSS Applications	Sea LevelFluctuationsWeather and SeaConditions	 Position Information of their Own Ships Connected to Navigational Instruments
Method of Data Transmission to the Land	Satellite Communication Tools	 Large Ships: Satellite Communication Tools Small Ships: None
Installation Rate of GPS/GNSS	100%	Large Ships:100%Small Ships:98%

Experiments

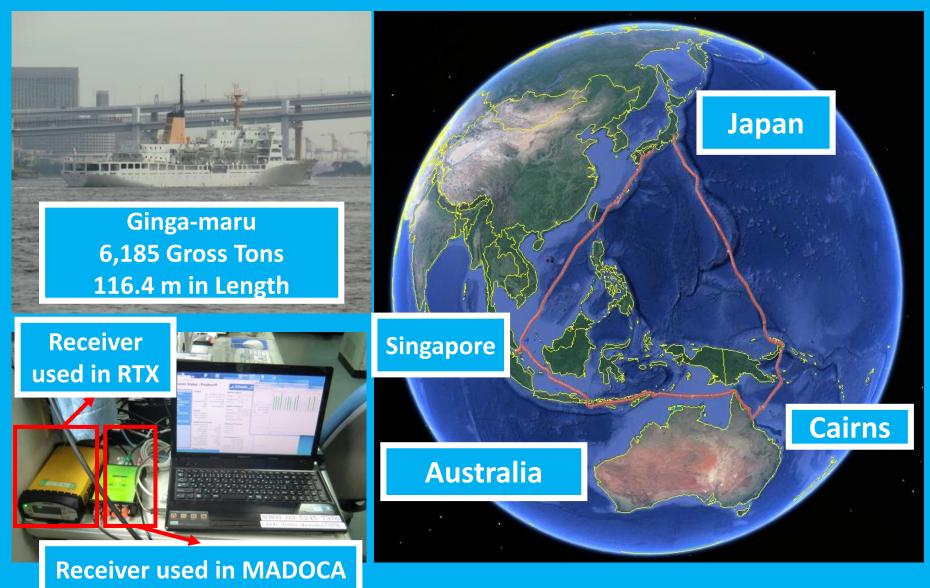
We performed experiments using the ship in order to determine whether a new application proposed.

We performed PPP experiments using CenterPoint RTX and MADOCA on the ship.

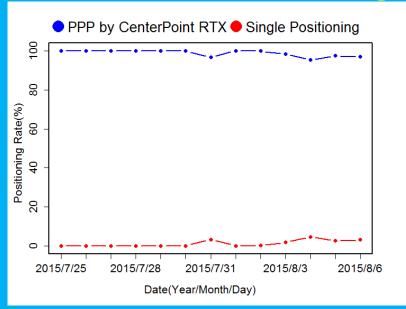

CenterPoint RTX (Real Time eXtended):

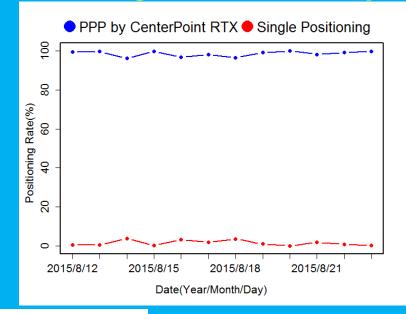
It is possible to obtain correction information of PPP on all land more than 90% using OmniSTAR.

MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis):

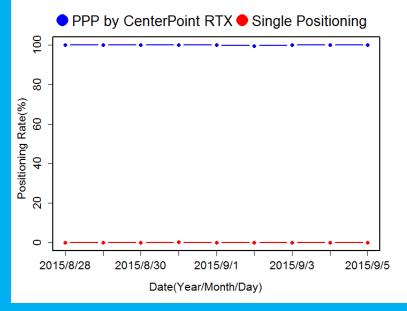

- Satellite orbit and clock determination for multiple GNSS constellations provided by QZSS (Quasi-Zenith Satellite System)
- Internet broadcasting of real-time products (2014.09.11~)

CenterPoint RTX and MADOCA


Experiments

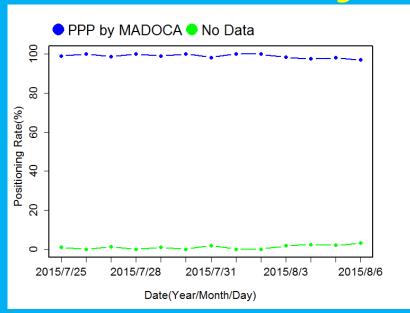

• Experimental Setup: 40 days (Japan ~ Cairns ~ Singapore ~ Japan)

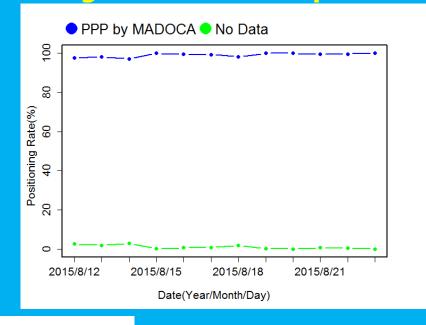
Results and Discussion


CenterPoint RTX: Change in the Positioning Rate on the ship

Tokyo~ Cairns

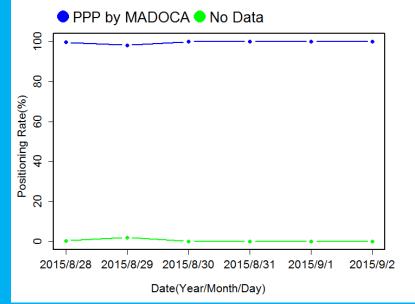
Singapore~ Kobe




Cairns~ Singapore

Positioning Rate of PPP was more than 95%.

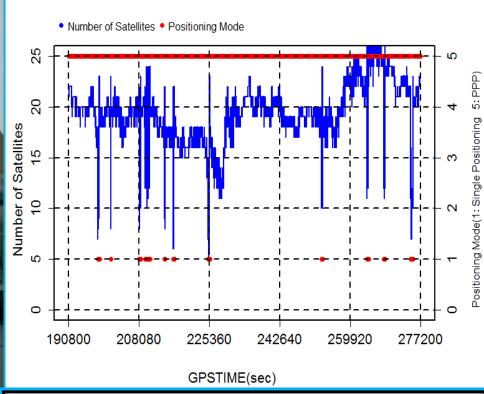
Results and Discussion


MADOCA: Change in the Positioning Rate on the ship

Tokyo~ Cairns

Singapore~ Kobe

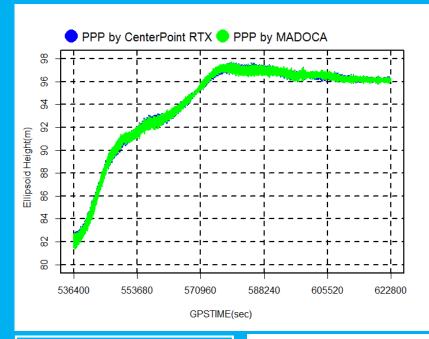

Cairns~
Singapore

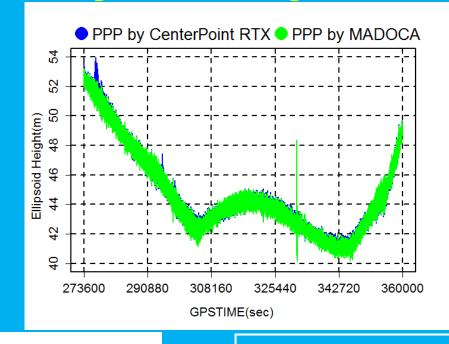

Positioning Rate of PPP was more than 97%.

Experimental Environment and Change in the Number of Satellites

Experimental Environment

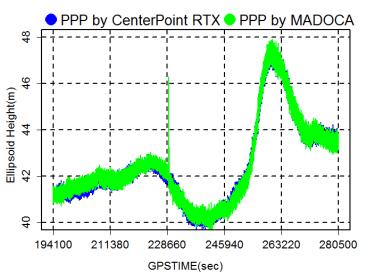
Change in the Number of Satellites (PPP by CenterPoint RTX : 2015.8.4.)





Positioning Rate of PPP was the smallest.

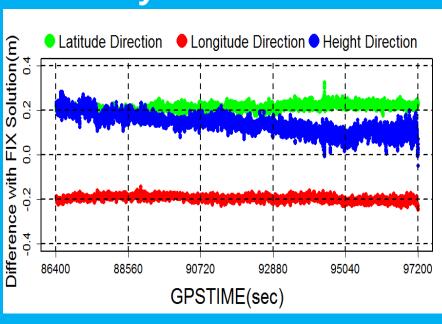
Results and Discussion

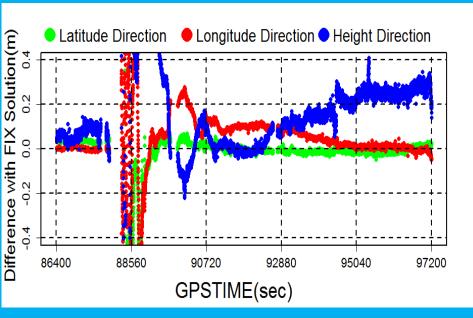

CenterPoint RTX and MADOCA: Positioning Results of Height Direction

Tokyo~ Cairns

Singapore~ Kobe

Cairns~ Singapore


Positioning Results
of Height Direction
calculated by
CenterPoint RTX and
MADOCA were
almost same. 16


Comparison to Relative Positioning Solution (Post-Processed RTK)

CenterPoint RTX and MADOCA: Traveling State at Japan (3 hours)

PPP by CenterPoint RTX

PPP by MADOCA

	Latitude (m)	Longitude (m)	Height (m)		Latitude (m)	Longitude (m)	Height (m)
Standard Deviation	0.016	0.012	0.043	Standard Deviation	0.226	0.118	0.387
Average	0.214	-0.194	0.141	Average	0.001	0.049	0.170
RMS	0.215	0.194	0.147	RMS	0.226	0.128	0.422

Comparison to Relative Positioning Solution (Post-Processed RTK)

CenterPoint RTX and MADOCA: Anchored State at Japan (24 hours)

PPP by CenterPoint RTX

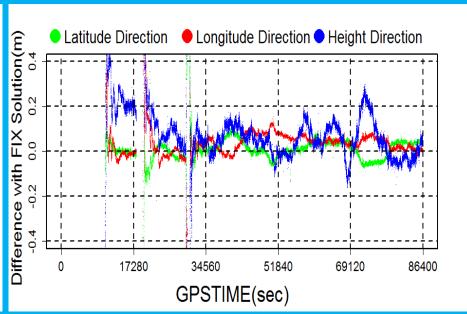
Difference with FIX Solution(m)

17280

34560

GPSTIME(sec)

ö


● Latitude Direction ● Longitude Direction ● Height Direction

51840

69120

86400

PPP by MADOCA

	Latitude (m)	Longitude (m)	Height (m)		Latitude (m)	Longitude (m)	Height (m)
Standard Deviation	0.016	0.013	0.037	Standard Deviation	0.106	0.114	0.169
Average	0.205	-0.191	0.170	Average	0.005	0.040	0.074
RMS	0.205	0.191	0.173	RMS	0.106	0.121	0.184

A New Disaster Prevention System at Sea

Alternative Data Interpolation of Sea Buoys: Large Ships

Meteorological Equipment

Waves, Tide Level, Tsunami,
Wind Direction and Wind Speed,
Water Temperature,
Current Direction and Flow Speed,
Temperature,
Atmospheric Pressure

Satellite Communication Tools

Transmitting the measurement results to the land

Measurements on Board

Data Transmission to the Land

A New Disaster Prevention System at Sea

A Disaster Preventing System using Ships in the Anchorage

We always output the sea-level change data of the ship installed to the computer.

System Server

1)When We Detect Abnormal Changes of the SeaData Acquisition Continues
Report to the Duty Officer
The Duty Officer Notifies the Alarm at Large Volume

Conclusion

Positioning rate of PPP was very high: 95%-100%.
 Positioning accuracy on board was approximately less than 10cm.

- It is possible to measure a wide range of sea area.
 Analysis of sea level fluctuations are expected.
- A disaster prevention system that can be completed in ships is required to protect valuable resources such as ships and sailors.