# Using pressure sensors for altitude aiding with a multi-constellation GNSS in urban environments

H. Tokura and N. Kubo *TUMSAT, Japan* 

### Outline

- Background and Objective
- Performance of barometric pressure sensor
- Altitude information provided by pressure sensor and calibration algorism
- Testing and Results
- Possibility of calibration using absolute altitude by single frequency RTK FIX solution
- Conclusions

#### Background

- Future ITS services will focus on technologies for vehicle autonomous navigation and assist for vehicles safety driving.
- Currently, many sensors can be integrated into vehicles as they become smaller and cheaper.
- Our target is avoid collisions by using barometric pressure sensors and consumer GNSS receiver to detect vehicles when they are on a complex multi-lane highway.





#### Objective

#### Accuracy requirement for Detecting high-lane



#### Altitude information precision demand is $\pm 5m$

#### Characteristics of altitude information by Sensor and GNSS receiver

Improving altitude information by Barometric pressure sensor + GNSS receiver

- Consumer GNSS receiver
  - ✓ Can provide absolute 3D position
  - × Affected by obstructs
  - × Vertical accuracy is not reliable to compare horizontal accuracy
- Barometric pressure sensor
  - ✓ Can provide altitude information continuously
  - ✓ Vertical accuracy is stable
  - × Fluctuate with atmospheric conditions in vehicle
  - × Need calibration by weather information
    - $\rightarrow$  Evaluate altitude information by Barometric pressure sensor

#### Related Studies on <u>Barometric Pressure sensor and GNSS</u>

- Height Measurement Error of Barometric Altimeter and Its Correction (Sakai, T. et al., 2005)
  - Describe characteristics and collecting of both GNSS altimeter and barometric altimeter for aircraft. Estimate magnitude of error and correcting altitude by atmospheric observation.
- Barometric and GPS Altitude Sensor Fusion (Zaliva, V. et al., 2014)
  - Improves accuracy and provides tighter confidence bounds of altitude from a sensors. Optimizing estimated altitude by altimeter for the GNSS altitude.
- Barometric Height Estimation Combined with Map-Matching in a Loosely-Coupled Kalman-Filter(Bevermeire, M. et al., 2010)
  - Sensor fusion algorithm based on IMU, GNSS and pressure sensor for vehicle.
- Enhancing Altitude Accuracy in Automotive Navigation using MEMS Barometric Sensor with GPS (Lionel, J. et al., 2008)
  - Details of the pressure sensor calibration and altitude filtering techniques. Several techniques to ciliolate altitude for barometric pressures sensor.

#### Performance of Barometric pressure sensor at static conditions



| Barometric pressure sensor      |                                                                                             |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
| Date                            | 8/1/2014                                                                                    |  |  |  |
| Period / Interval               | 9Hours / 10minuits                                                                          |  |  |  |
| Environments /<br>Data provided | Static /<br>Japan meteorological<br>agency vs. Pressure<br>sensor at build.<br>Distance 4km |  |  |  |
| Conditions                      | Calibration at start time                                                                   |  |  |  |

| Results              |          |
|----------------------|----------|
| 1σ                   | 0.24hPa  |
| Convert for altitude | About 2m |

- ✓ Barometric pressure Sensor shows same tendency with metrological observation
- ✓ Atmospheric pressure changes effected have to be calibrated for altitude

#### Altitude provided by Barometric pressure sensor

- Transform to Altitude by Barometric pressure
- Altitude difference based calibration
  - Reference atmospheric barometric pressure provided by Japan meteorological agency by each 10 minuets
  - $\checkmark\,$  Reference absolute altitude source ( RTK FIX solution )

 $ALT(0) - ALT(obs) = -8.3 \cdot ((P(0) - \Delta P(JMA)) - P(obs))$ 

ALT(0): Absolute altitude provided by RTK Fix solution P(0): Atmospheric pressure obsarvation at start time  $\Delta P(JMA)$ : Atmosheric barometric pressure obsarvation provided by Japan meteorological agency by each 10 minuets

 $\Delta ALT = -8.3 \cdot \Delta P$ 

### Altitude provided by Barometric pressure sensor



19/8/2015 (TOKYO)

- Pressure sensor observations drifted
- Calibration with metrological observation is valid

# Testing and results <u>3 trials conditions</u>



#### Course

 Start - round Middle urban area - go back to start point (about 20 minute) - round Dense urban area - go back to start point (about 40 minute)

- 3 Trials with Sensor and Consumer GNSS receiver
  - ✓ GNSS Receiver
    - ✓ Single frequency
    - ✓ GPS/QZSS/BaiDou
    - ✓ Output Rawdata and NMEA
  - ✓ Barometric pressure sensor
  - Reference position was taken by POS LV (Sensor integrated high-grade post-processing system)
  - ✓ comparison objective
    - ✓ Standard deviation
    - ✓ Reliability

(the percentage of number that of within absolute 5merters)

#### Altitude comparison sensor vs. GNSS

Trial 1



#### Altitude comparison sensor vs. GNSS

Trial 2



#### Altitude comparison sensor vs. GNSS

Trial 3



#### Summery of Altitude comparison sensor vs. GNSS

#### Sky plot and altitude error



### Summery of Altitude comparison sensor vs. GNSS

| Environment |        | Se      | ensor     | NMEA               |           |                    |
|-------------|--------|---------|-----------|--------------------|-----------|--------------------|
| Trial       |        | minuits | 1σ<br>[m] | Reliability<br>[%] | 1σ<br>[m] | Reliability<br>[%] |
| 1           | Middle | 26      | 0.49      | 100.0%             | 1.59      | 100.0%             |
| L           | Dense  | 41      | 0.59      | 100.0%             | 6.58      | 83.8%              |
| 2           | Middle | 18      | 0.58      | 100.0%             | 0.94      | 100.0%             |
| 2           | Dense  | 45      | 0.96      | 100.0%             | 4.88      | 80.9%              |
| 3           | Middle | 19      | 0.74      | 100.0%             | 1.38      | 100.0%             |
| 5           | Dense  | 43      | 0.71      | 100.0%             | 5.01      | 80.4%              |

- ✓ Altitude provide by GNSS is difficult to detect highway
- ✓ Altitude provide by Pressure sensor is stable than GNSS
- ✓ Reliability of Altitude provide by GNSS depends on there environment
- ✓ There are drifts in Barometric pressure fluctuates by atomosperic factor

#### Algorithms for calibration

Calibration using absolute altitude by RTK FIX solution

- Barometric pressure fluctuates with atmospheric conditions in vehicle
  - Pressure changes by atmospheric pressure and in the vehicle conditions such as air-conditioner and opening or closing the car doors.
- In the case of real-time positioning at moving vehicle, altitude information provide by sensor have to be frequently calibrated

 $\rightarrow$  if the finite intervals of reliable absolute altitude information are obtained, these are valid for calibrate pressure sensor

• Evaluation of the possibility in RTK FIX solution for calibration

 $\rightarrow$ How available and reliable is the FIX solution?

#### Single frequency RTK-Fix solution Trial

•

•

•



#### Availability of Single frequency RTK Static 24houres data

# Static test at open sky GPS 24hours 1Hz

| Number<br>of Sat | Epoch | FIX(%) |
|------------------|-------|--------|
| 5                | 3128  | 11.13  |
| 6                | 10455 | 7.51   |
| 7                | 28275 | 12.50  |
| 8                | 16357 | 24.75  |
| 9                | 14657 | 51.55  |
| 10               | 6062  | 80.77  |
| 11               | 5695  | 95.38  |
| 12               | 1772  | 94.30  |

- In the point of FIX rate, Dual frequency RKT is enough to 6or more satellites.
- ✓ For Single frequency RTK, 10 or more satellites are required.



#### Reliability of Single frequency RTK <u>Static 24houres data</u>

#### Static test at open sky with **30deg mask angle** GPS/BeiDou/QZSS 24hours 1Hz

| Number<br>of<br>Sat | Number<br>of<br>Fix<br>solution | Number Average<br>of Ratio<br>Reliable factor<br>solution |      |
|---------------------|---------------------------------|-----------------------------------------------------------|------|
| 8                   | 13                              | 10                                                        | 3.6  |
| 9                   | 389                             | 303                                                       | 4.7  |
| 10                  | 3961                            | 3903                                                      | 4.9  |
| 11                  | 8396                            | 8392                                                      | 5.4  |
| 12                  | 15680                           | 15680                                                     | 5.4  |
| 13                  | 8304                            | 8304                                                      | 6.8  |
| 14                  | 3327                            | 3327                                                      | 8.6  |
| 15                  | 2803                            | 2803                                                      | 11.3 |
| 16                  | 6711                            | 6711                                                      | 13.0 |
| 17                  | 1381                            | 1381                                                      | 12.9 |
| total               | 50965                           | 50814                                                     | 7.7  |

# Availability and Reliability



#### Performance of single frequency RTK

#### Moving Vehicle data -Trial 1 – SNR MASK



x

| • | Minus -8 to -1 with the standard SNR |
|---|--------------------------------------|
|   | mask (Elevation dependent)           |

#### \*Reliable solution

2D-error within 0.5m and altitude error within 1m

| Rover Base Station |    |    |    | Elevation (deg) |    |    | (dBHz) |    |     |
|--------------------|----|----|----|-----------------|----|----|--------|----|-----|
|                    | <5 | 15 | 25 | 35              | 45 | 55 | 65     | 75 | >85 |
| L1                 | 0  | 45 | 45 | 47              | 48 | 50 | 50     | 50 | 50  |

SNR Mask

#### Standard for SNR mask

#### Performance of single frequency RTK

#### Moving Vehicle data -Trial 1 – SNR MASK



\*Reliable solution 2D-error within 0.5m and altitude error within 1m

#### Performance of single frequency RTK

### Time intervals of reliable absolute solution

Conditions

- ✓ Ratio >3.0
- ✓ SNR mask Elevation -8 [dB-Hz]
- ✓ Over 12satellites



Middle urban area Availability : 12.4% Reliability : 94.4%

Dense urban area Availability : 8.8% Reliability : 97.2%



Maximum time intervals =1394.4sec Standard deviations of time intervals = 34.4sec

## **Conclusion**

- Altitude information is calculated by Barometric pressure sensor calibrate by metrological observation data and RTK solution
- Altitude information by sensor is more stable than GNSS data with high availability in the short period
- Reliability of single frequency RTK solution is strictly affected by number of satellites
- Limited of the high reliable solutions are valid for calibrate barometric pressure sensor