Availability Improvement of RTK-GPS with IMU and Vehicle Sensors in Urban Environment

ION GPS/GNSS 2012

Tokyo University of Marine Science and Technology Nobuaki Kubo, Chen Dihan

Contents

- Background
- Objective and Commercial Product
- Loosely coupled Integration of RTK with other sensors
- Proposed Technique
- Test Results
- Summary

Background

- The number of traffic accident deaths is decreasing in Japan for two decades.
- Future ITS still requires more efficient transport system.
 - -Safety
 - -Energy saving
 - -Standardization
- What is a roll of GNSS?

Transition of the number of deaths for 20 years in Japan (within 24 hours)

ITS and GNSS

- Automatic collision avoidance system have been installed recently. They are not related to GNSS.
- However, most of present and future services for ITS will still rely on GNSS to some extent.

Where is your position? (10m or 1m or 10cm)

Two Commercial Products

#1 Survey-grade GNSS + DMI + military-grade IMU

- -Expensive but fully-integrated turnkey position
- -10 cm accuracy even with one minute outage
- -it is often used as a reference system for automobile

#2 Car-navigation-grade GNSS + Speed sensor + IMU

- -A few hundred dollars but several meters accuracy
- -100% coverage, continuous positioning

Performance of #2 Product

- Open-sky: Horizontal Errors were within 3m
- <u>Urban</u>: Horizontal Errors were within <u>5m</u>
- <u>Dense-urban</u>: following figures
- Underground: 10m- / minute

West Shinjuku in Tokyo (many skyscrapers)

Maximum deviation: about 10m

Our Objective

Survey-grade GNSS + Speed sensor + IMU

Reliable RTK still requires dual-frequency

Low cost

 Prospective accuracy in safety use for ITS like <u>lane</u> recognition is said under <u>1m</u> with <u>continuous positions</u>

Algorithm of Loosely Coupled Integration

RTK

- Double-differenced observations
- LAMBDA method
- Ratio Test (>3) + ADOP

Signal Quality Test

(Detecting dominant multipath signal)

Detection method is very simple

Ambiguity Resolution with Velocity-Information

(Kubo et al, 2008)

- RTK requires initial positions (=float solutions).
- Instead of normal float solution, expected position is used.
- Search space can be reduced dramatically.

Expected Position(t) = Previous Fix Position(t-1) + (Velocity(t)+Velocity(t-1))/2

Algorithm of Loosely Coupled Integration

Heading from GPS Velocity

- We can not get the right heading when the vehicle is stationary or in a low speed
 - GPS velocity measurement has a few cm/s noise

- The heading error will increase when the vehicle is moving in a high yaw rate
 - GPS sampling is in a low rate

$$x_{k} = (\psi_{G_{k}}, \omega_{g_{k}})$$

$$x_{k+1} = F_{k}x_{k} + Gw_{k}$$

$$y_{k} = Hx_{k} + v_{k}$$

$$F = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}$$

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_{k}(y_{k} - H_{k}\hat{x}_{k|k-1})$$

$$\hat{x}_{k+1|k} = F_{k}\hat{x}_{k|k}$$

$$K_{k} = P_{k|k-1}H_{k}^{T}(H_{k}P_{k|k-1}H_{k}^{T} + R_{k})^{-1}$$

$$P_{k|k} = P_{k|k-1} - K_{k}H_{k}P_{k|k-1}$$

$$P_{k+1|k} = F_{k}P_{k|k}F_{k}^{T} + G_{k}Q_{k}G_{k}^{T}$$

$$R = \begin{bmatrix} \sigma_{\Psi_G}^2 & 0 \\ 0 & \sigma_{\Psi_g}^2 \end{bmatrix}$$

A new heading estimation algorithm

- Moving situations
 - Low speed (from vehicle speed sensor)
 - Normal speed with <u>low yaw rate and HDOP<5</u>
 - with low yaw rate and HDOP>5
 - with <u>high yaw rate and HDOP<5</u>
 - with <u>high yaw rate and HDOP>5</u>

Speed threshold : 1 m/s Yaw rate threshold : 4 deg/s

• The measurement covariance will be updated in each state.

Algorithm of Loosely Coupled Integration

Wrong fix Detection

Calculate the change of the altitude

$$\Delta h = \int_{t_1}^{t_2} v \sin(\theta) dt$$

- Velocity in vertical direction from GPS is also used
- Epochs of t1 and t2 are used when the RTK-GPS is available.
- Bad quality carrier-phase can be often received in t2 (re-tracking).

Automobile Experimental Tests

- <u>Test1</u> (only RTK): Tokyo (2011)
- Test2 (RTK+IMU+Speed): Nagoya (2010)

GPS Receiver	NovAtel OEM5 or JAVAD Delta (CS=100s)
Antenna	NovAtel GPS702 or JAVAD RegAnt
IMU	Crossbow IMU 440 (MEMS)
Speed sensor	Standard vehicle loaded wheel speed sensors
True position	POS/LV (Applanix) (positional accuracy - within 10cm/1min outage)
Baseline	within 10 km
Mask angle	15 degrees
HDOP threshold	10

Tokyo (Test1)

(Open 10% Urban 50% Dense 40%)

Total period: 1hour

Data rate: 5Hz

JAVAD Delta+RegAnt

Relatively wide road

RTK Performance (Test1)

Availability and percentage within 50 cm in horizontal error

	GPS	GPS+QZS
DGPS	69.6%	84.7%
Normal RTK	17.6% (99.2%)	31.7% (99.7%)
+signal quality test	15.7% (99.8%)	36.0% (100%)
+velocity information	21.2% (99.8%)	43.5% (100%)

Total: 17800 epochs (5Hz) (): percentage within 50 cm

Temporal Horizontal Errors (Test1)

(GPS+QZS, Best case in RTK)

7737 / 17800 epochs

Nagoya (Test2)

(Open 0% Urban 40% Dense 50% No-Sky 10%)

Test Route

- QZS was not evaluated
- Total period: <u>27min</u>
- NovAtel OEM5+ GPS702
- Data rate: <u>10Hz</u>
- POS/LV was used to evaluate the precise temporal errors.
- Relatively wide road
- Good GPS Constellation
- Average speed was <u>3.5m/s</u>

Number of Used Satellites (Test2)

- Average NUS in reference -> 7.1
- Average NUS in rover -> 3.2

L1 + L2 carrier phase are valid Percentage with 4 or more satellites: 42%

Over 50 are not displayed

RTK Performance (Test2)

Availability and percentage within 1 m in horizontal error

	GPS	
DGPS	51.0% (55.3%)	
Normal RTK	12.4% (88.9%)	
+signal quality test	13.0% (98.4%)	
+velocity information	32.0% (94.8%)	for integration
+ADOP < 0.25	20.0% (99.8%)	

Total: 16270 epochs (10Hz) (): percentage within 1 m

The rest of 68 % positions have to be generated from filtered DGPS or INS using our proposed integration method.

Wrong Fix Detection Summary (Test2)

Temporal Horizontal Errors in RTK (32% of all)

Horizontal	Statistics	
Errors (m)	Wrong fix	Detection
1m-2m	13	9
2m-3m	3	3
>3m	259	259

Most of wrong fixes were detected!

Total Performance (Test2)

	Statistics	
Horizontal Errors (m)	N	Percentage
<=1m	13379	82.2
>1m	2891	17.8

Total Horizontal Positions (Test2)

• RTK-GPS fixed positions

32% of all (5219 of 16270epochs)

Positions given by our proposed integration system

68% of all (11051 of 16270epochs)

II 100 %

Summary

- Our proposed signal quality test and velocity use for the reliability and availability in RTK were quite effective in urban environment. However, there are still wrong fixes.
- Loosely coupled integration (GPS+IMU+Speed) method was proposed and availability was improved from 32% to 100%.
 Accuracy deterioration was small using IMU and Speed.

- Multi-GNSS and Multi-Frequency is clear in future. As QZS was effective in RTK, the performance of RTK in urban environment must be improved.
- What is an appropriate application in the level of 1m accuracy?

Thank you for your attention!

nkubo@kaiyodai.ac.jp

Acknowledgements

- I would like to thank the Toyota central R&D for their valuable experimental data.
- Financial support was partly provided by Space Use Promotion Grant from Ministry of Education, Culture, Sports, Science and Technology.