ソフトウェアGPS受信機の開発について

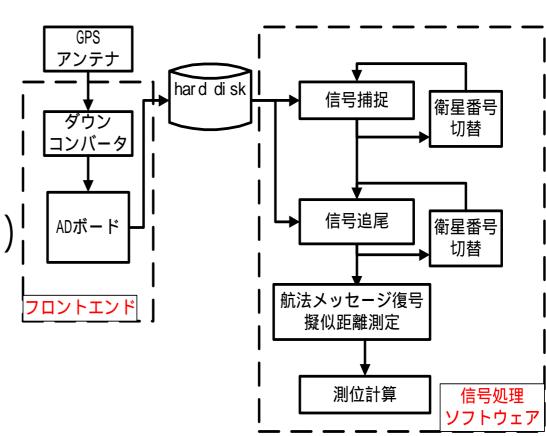
- 誤差要因に対するロバスト性の検証 -

東京海洋大学 情報通信工学研究室

> 近藤俊一郎 久保信明 安田明生

項目

- ソフトウェア受信機
- 受信機の構成
- 信号処理アルゴリズム
- 改良
- 試験と結果
- **まとめ**


ソフトウェア受信機

- 信号処理部分の再構成が可能
 - 低コスト(相関器用ハードウェア不要)

- 信号処理の再現性
 - マルチパス補正
 - 電離層シンチレーション
 - 新アルゴリズムの試験

受信機の構成

- フロントエンド
 - ダウンコンバータ
 - ADコンバータ
- 信号処理(MATLAB)¦
 - 信号捕捉
 - 信号追尾
 - 擬似距離測定
 - 測位計算

フロントエンド(電子航法研究所提供)

Dual Channel Downconverter (CRS社製)

Dual Chamile Downson (City	
周波数	1.57542GHz (L1)
	1.2276GHz (L2)
IF(中間周波数)	13.991429MHz (L1)
	13.60 (L2)
帯域幅	18MHz
ゲイン	65dB
REF 周波数	10MHz

PCDAQ (アイダックス社製)

サンプリング周波数	最大105MHz
分解能	14bit
チャンネル数	4ch
収集容量	最大1.44TB

信号処理ソフトウェア

■ L1PCベースGPS受信機

■ 信号捕捉:FFTベース

■ 信号追尾: DLL PLL

■ 擬似距離測定: 相対的測定(Tsui 2000)

■ 測位計算: 単独測位(最小二乗法)

問題点

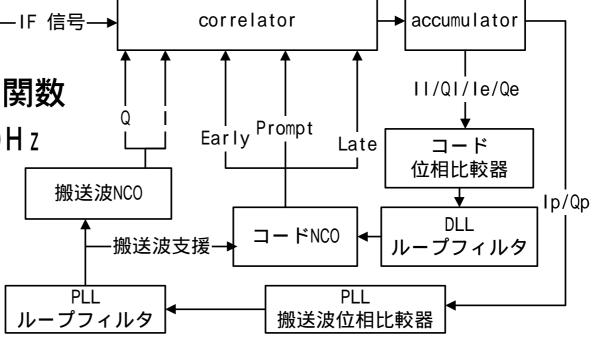
- 1チャンネル リアルタイム処理に適応できない
- FLLの欠如PLLだけではカバーできる周波数帯域が狭い
- 相対的擬似距離測定 測位演算との整合性

目的

■ FLLの追加によるロバスト性の向上

サイクルスリップ

ダイナミック特性


(再補足とPLLの間にもう一つの処理を設けたい)

信号追尾ループ

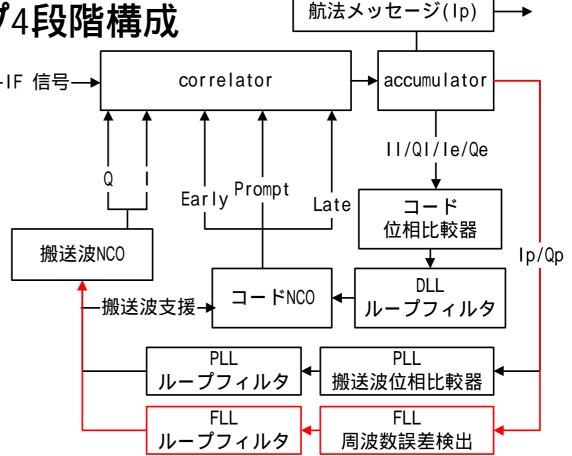
- DLL
 - 位相比較器:early-late
 - 相関間隔:0.1チップ

- 位相比較器:atan関数
- ループ帯域幅:50Hz

航法メッセージ(Ip)

■ 搬送波追尾ループ4段階構成

PLL**ルー**プ帯域幅


13Hz

25Hz

FLLループ帯域幅

50Hz

100Hz

ドップラ周波数の分散値で制御(60msec)

■ 周波数誤差検出(discriminator)

$$\frac{\operatorname{atan}(\operatorname{cross}/\operatorname{dot})}{t_1 - t_2}$$

$$dot = I_{p}(t_{1}) \cdot I_{p}(t_{2}) + Q_{p}(t_{1}) \cdot Q_{p}(t_{2})$$

$$cross = I_{p}(t_{1}) \cdot Q_{p}(t_{2}) - I_{p}(t_{2}) \cdot Q_{p}(t_{1})$$

Ip:I相の相関値 Qp:Q相の相関値

ループフィルタ

$$F(z) = \frac{C_1 + C_2 - C_1 z^{-1}}{1 - z^{-1}}$$

$$F(z) = \frac{C_1 + C_2 - C_1 z^{-1}}{1 - z^{-1}}$$

$$C_1 = \frac{8\zeta \omega_n t_s}{K(4 + 4\zeta \omega_n t_s + (\omega_n t_s)^2)}$$

$$C_2 = \frac{4(\zeta \omega_n t_s)^2}{K(4 + 4\zeta \omega_n t_s + (\omega_n t_s)^2)}$$

K:ゲイン(可変), :減衰係数(0.707),

n: **自然角周波数(可変**) ts: サンプリング間隔(1msec)

ゲインと自然角周波数はループ帯域幅によって値を決定

試験内容

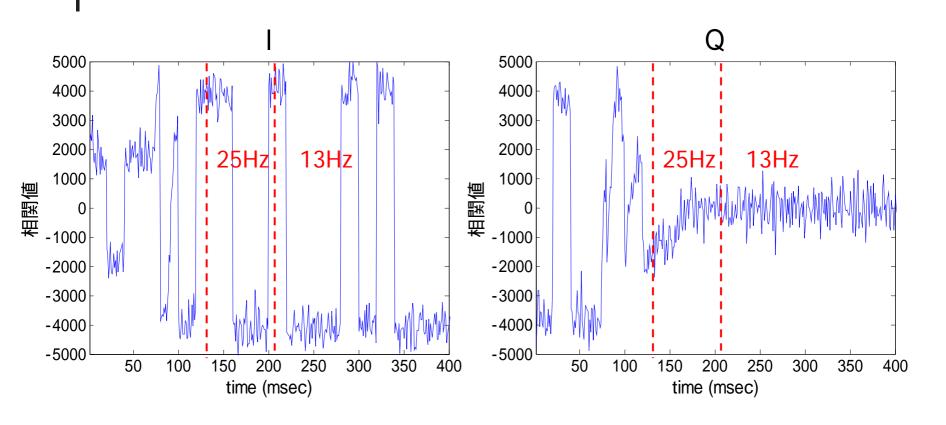
■ 静止でGPS信号の取得

■ 信号処理ソフトウェアで解析

■信号追尾ループのI,Q相の出力から FLLの動作確認を行う

取得条件

取得場所	電子航法研究所本館屋上 経度:35°39'N, 緯度:139°47' E 高さ:59m
取得日時	2005/10/11
データ長	100 seconds
サンプリングレート	56MHz
アンテナ	NovAtel GPS 600 LB



FLLの動作確認(PRN-6)

搬送波位相がロックしていないため両チャンネルに相関波形が 出ている

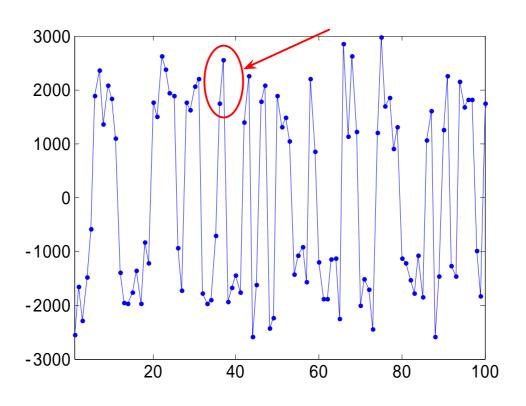
PLLへの移行(PRN-6)

PLLに移り、位相がロックしていることがわかる

まとめ

■ 他の捕捉衛星、PRN-1,5,14,22,25,30 の信号からも同様の結果が得られた。

FLLが正常に動作していることが確認できた。


■ PLLへの移行にも問題はない。

一今後の課題

- 信号処理ソフトウェアのマルチチャンネル化と高速化(C++)
- 擬似距離測定法式の変更
- ダイナミック特性に対するロバスト性の検証
- マルチパス補正や電離層シンチレーションへの ロバスト性の検証

*
$$\omega_n = \frac{2Bw}{(\zeta + 1/4\zeta)}$$

SBAS 134

■位相が