

GPSによる三周波数アンビギュイティ決定に関する研究

張 雲 情報通信工学研究室 東京海洋大学

講演内容

- 背景と目的
- L5信号の特徴
- 三周波数信号シミュレーション
- アンビギュイティ決定計算
- ・結論と今後の課題

背景と目的

背景

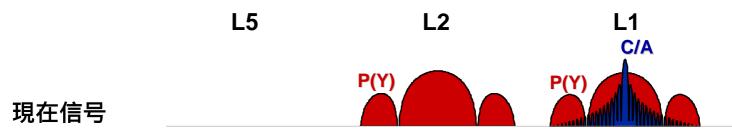
GNSS近代化、民間における計画:

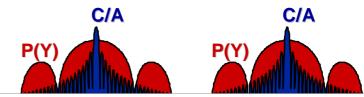
- L2周波数に民生C/A コードを付加
- 民生用L5周波数(中心周波数1176.45MHz)を全 Block IIF衛星に付加

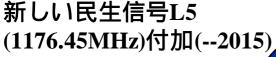
GPSは現在の二周波数から三周波数に 変わる

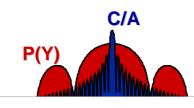
多くの利点が予想される

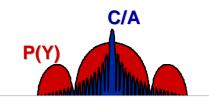
研究目的


搬送波位相(キャリア)計測における、三周波数利用と二周波数利用を比べて、三周波数によるアンビギュイティ決定(Ambiguity Resolution: AR)の利点(1.アンビギュイティ決定と基線長関係、2.アンビギュイティ決定と電離圏誤差の関係)について検証する。


L5 信号の特徴


民間における、GPS 信号の計画 (M codeを除く)




C/AコードL2付加(--2011)

広帯域幅(>20MHz)

1176.45 MHz 1

V-S

1227.6 MHz

1575.42 MHz

ム帝**攻**幅(>20MHz) 長チップ (10,230chip) 航行メッセージ100bps

基準信号と線形結合 (ワイドレーン)信号のパラメータ

信号	中心周波数 (MHz)	波長 (meters)	電離圏誤差 (cycle) (L1に対して)	RMSキャリア 雑音(meters)
L1	1575.42	0.19	1.0	0.00266
L2	1227.60	0.24	1.31	0.00440
L5	1176.45	0.25	136	0.00230
ワイドレーン (L1-L2)	347.82	0.86	-0.28	0.0197 (約L1の 7 倍)
ワイドレーン (L1-L5)	398.97	0.75	-0.33	0.0125 (約L1の5倍)
ワイドレーン (L2-L5)	51.15	5.86	-0.06	0.118 (約L1の44

ワイドレーン信号のキャリア雑音は拡大され、Geometry-free方法におけるARに影響するワイドレーン信号の波長が長くなり、基準信号と比べるとARが改善する

L1-L5信号のキャリア雑音はL1-L2信号より小さい L2-L5信号の波長が一番長い —————

→ワイドレーン(L1-L2)と比べると

ARがさらに改善する

L5信号の特徴と利点

中心周波数1176.45MHz:

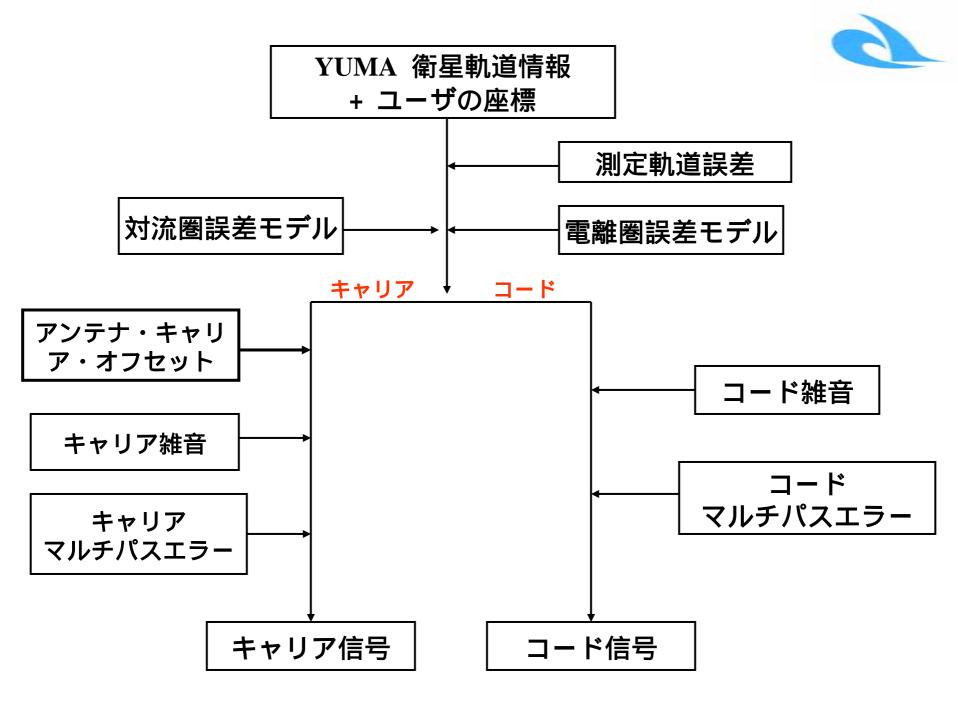
航空ユーザは受益者になる(周波数は保護飛行バンド1164MHz—1215MHzの中で、保護されてる)

L2とL5 線形結合(ワイドレーン結合):

• 波長は5.861mになるので、アンビギュイティ測定が 高速になる

広帯域幅(>20MHz):

- ・ マルチパスエラー (multipath error)が小さい
- 測距精度 (ranging accuracy)を改善する


長チップ (10,230chip):

• コードの分離性能が向上する。

など

三周波数信号シミュレーション

シミュレーションの誤差パラメータ

エラー パラメータ	基準局	移動局	
電離圏誤差モデル	Klobuchar モデル 緯度、経度、仰角依存	Klobuchar モデル 緯度、経度、仰角依存	
対流圏誤差モデル	Saastamoinenモデル 仰角依存	Saastamoinenモデル 仰角依存	
測定軌道誤差	標準偏差2.1m ¹	標準偏差2.1m ¹	
アンテナ・キャリア オフセット	米国の国家測地 調査所からダウンロード	米国の国家測地 調査所からダウンロード	
コード雑音	DLL 雑音	DLL 雑音	
キャリア雑音	PLL 雑音	PLL 雑音	
コード マルチパス エラー	地面反射	地面 と構造物反射	
キャリア マルチパス エラー	地面反射	地面 と構造物反射	

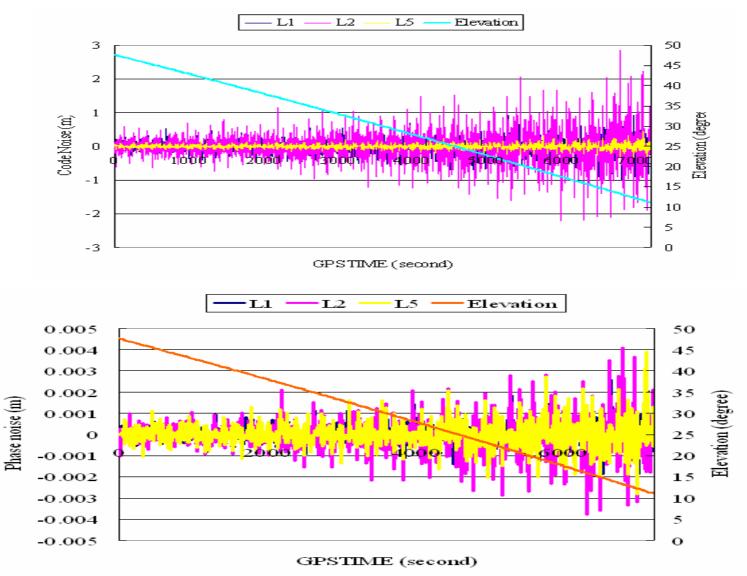
1. GPS衛星からの航法メッセージの軌道誤差

d

シミュレーションにおける 雑音の大きさ

$$\sigma_{DLL} = \lambda_c \sqrt{\frac{\alpha \times d \times B_{DLL}}{c/n_0}} \left[1 + \frac{2}{T_d \times c/n_0} \right]$$

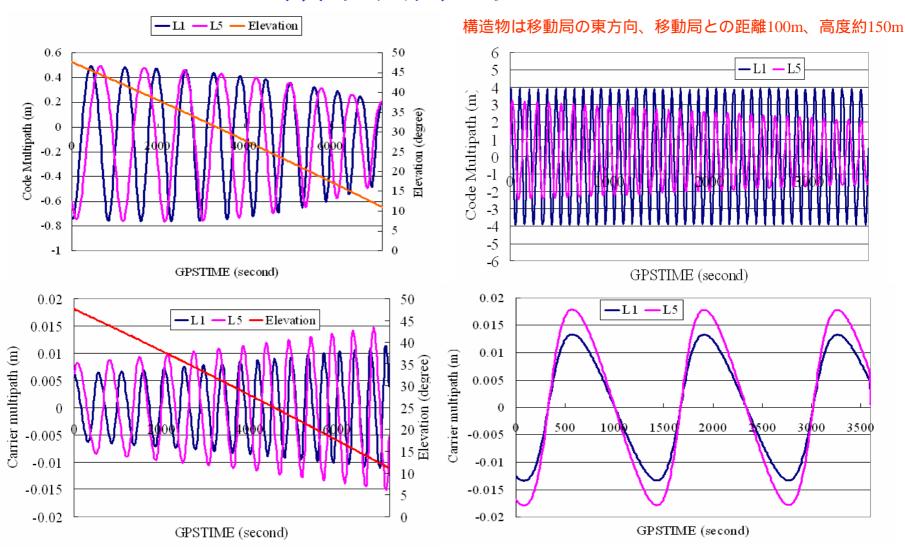
$$\sigma_{PLL} = \frac{\lambda_L}{2\pi} \sqrt{\frac{B_L}{c/n_0}} \left(1 + \frac{1}{2 \times T_d \times c/n_0} \right)$$


 c/n_0 は信号強度(dB-Hz)である、雑音を作る時に必要

シミュレーションの雑音を決める パラメータ

	L1	L2	L5
$\lambda_L (cycles/sec)$	0.1903	0.224	0.2548
$\lambda_c \ (chip/\sec)$	293.05	293.05	29.305
d (chip)	0.1	0.1	1.0
$T_d(ms)$	20	20	10
$\int d (ms)$	(nav.msg 50bps)	(nav.msg 50bps)	(nav.msg 100bps)
$B_{DLL}(Hz)$	0.5	0.5	0.5
$B_L(Hz)$	10	10	10
c/n_0	NOVATEL 702アンテ OEM3 受信機で取得し	L1と同じ	

シミュレーションで生成した雑音



2時間の31番衛星信号コードの雑音(上)とキャリア雑音(下)

シミュレーションで生成した マルチパスエラー

31番衛星信号における、地面反射マルチパスエラー:コード(上)とキャリア(下)

3番衛星信号における、構造物反射マルチ パスエラー:コード(上)とキャリア(下)

アンビギュイティ決定計算

設 定(1)

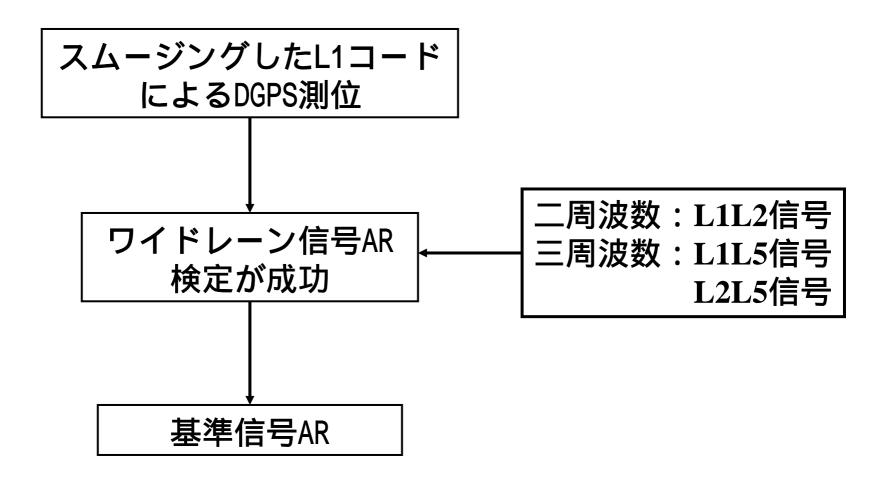
- シミュレーションで生成した信号を利用して、二周波数と三周 波数アンビギュイティを決定する
- 計算時間:0900 JST 2003年4月20日—0900 JST 2003年4月 21日
- 衛星軌道:YUMA191ファイル
- 使用計算機: DELL GX270 Celeron 2.4GHz
- コード平滑時間:20秒
- マスク角度:10度
- 1秒間隔でサンプル、2分ごとにアンビギュイティの初期化
- アンビギュイティ決定成功率(Ambiguity success rate: ASR) は720 回(24時間)計算を行っている。ASRが高くなると、ARの性能が良くなる。

設 定(2)

	地名	高度(m)	距離(km)
基準局	千葉市川1	100	
短基線	千葉市川2	100	0.691
中基線	足立	100	14.167
長基線	いわき	100	180.871
超長基線	久慈	100	521.715

アンビギュイティ決定方法

二周波数:


ワイドレーン L1L2信号を使用してOTF(on-the-fly) 方程式(Cascade方法)を用いて計算する

三周波数:

- (1)ワイドレーン L1L5信号を使用してOTF方程式を 用いて計算する
- (2)ワイドレーン L2L5信号を使用してOTF方程式を 用いて計算する
- (3)Geometry-Free 方法を用いて計算する

OTF方程式(Cascade 方法)

Geometry-Free 方法

三周波数の場合、二つの独立したgeometry-free方程式がある:

$$\Phi_{L5} - \Phi_{L2L5} = -\frac{f_1}{f_5} \left(\frac{f_1}{f_5} + \frac{f_1}{f_2} \right) I_{L1} + \lambda_{L5} N_{L5} - \lambda_{wL2L5} N_{wL2L5} + \varepsilon_{GL5-L2L5}$$

$$\Phi_{L5} - \Phi_{L1L5} = -\frac{f_1}{f_5} \left(\frac{f_1}{f_5} + 1 \right) I_{L1} + \lambda_{L5} N_{L5} - \lambda_{wL1L5} N_{wL1L5} + \varepsilon_{GL5-L1L5}$$

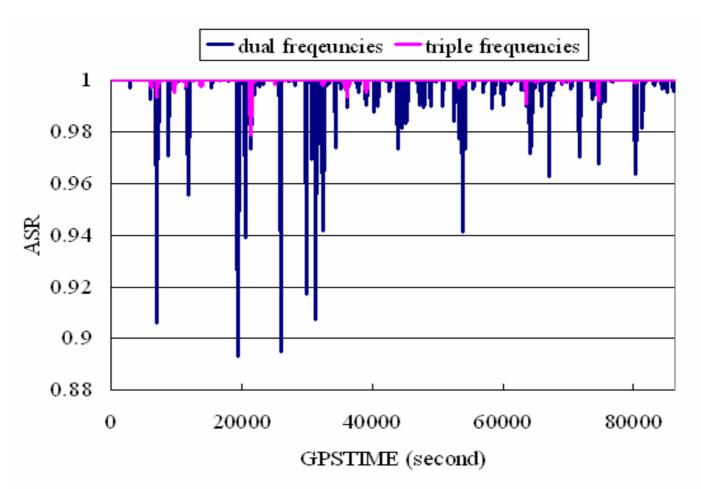
$$N_{L5} = time \ average \left\{ \frac{1}{I_5} \left[\lambda_s \left(-\frac{f_1}{f_5} \right) \right] \cdot \left[\left(\frac{f_1}{f_2} + \frac{f_1}{f_5} \right) (\Phi_{L5}(t) - \Phi_{wL2L5}(t) + \lambda_{wL2L5} N_{wL2L5}) \right] \right\} \quad (cycles)$$
where:
$$\varepsilon_{GL5-L2L5} = \varepsilon_{L5} - \varepsilon_{L2L5} \quad \varepsilon_{GL5-L1L5} = \varepsilon_{L5} - \varepsilon_{L1L5}$$

Geometry-free 方法 は三周波数の長距離の場合に利用、連続キャリア信号が必要である。

アンビギュイティ決定成功率(ASR)比較

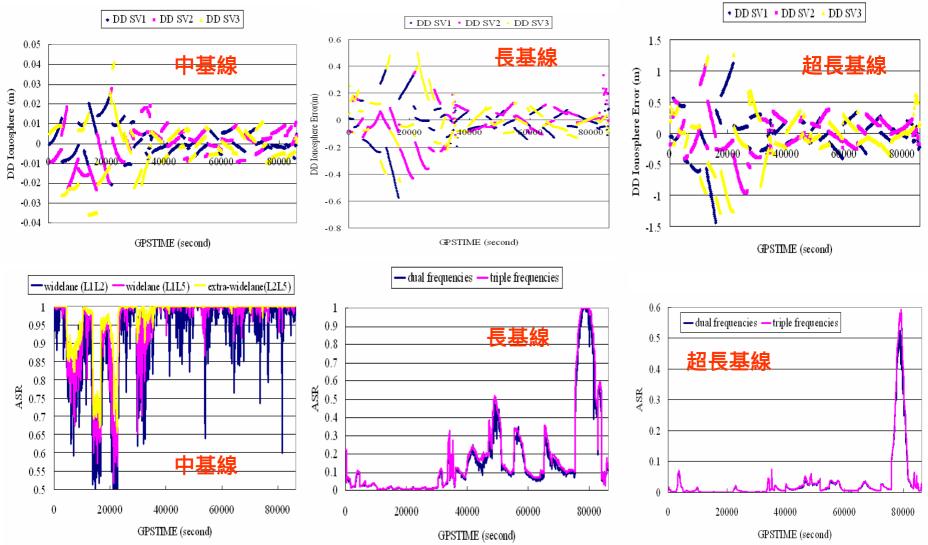
	マルチパスエラー なし				マルチパス エラーあり
	短基線	中基線	長基線	超長基線	短基線
二周波数 OTF	99.10%	90.85%	5.61%	0.2%	83.56%
三周波数 OTF	99.87%	95.83%	8.23%	0.6%	93.32%
三周波数 Geometry-free	15.5%	15.5%	15.5%	15.5%	
Geometry-free (200秒平均)	84.02%	84.02%	84.02%	84.02%	

マルチパスエラーなしの場合、中基線で、ASRは約5%改善した;長基線で、ASRは約2.6%改善した;超長基線で、ASRは改善されない。


長基線と超長基線で、ARは高速化できない(ASRが10%以下)。

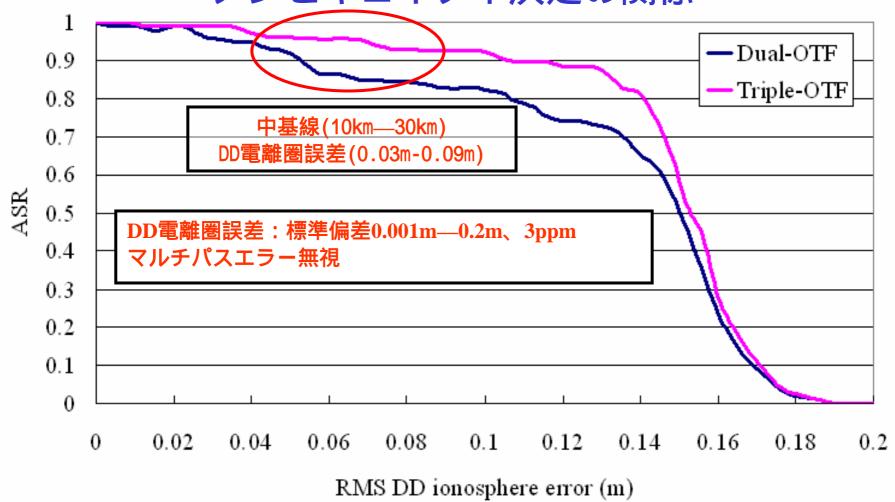
マルチパスエラーありの場合、短基線で、ASRは約10%改善した

Geometry-free 方法は基線長に影響されず、連続キャリア信号を時間平均することにより、ASRが改善した



分析:三周波数では、短基線における一日のASRがほぼ99%以上であることが分かる

2 4時間の二重差電離圏誤差(Klobuchar モデル)(上) とASR変化(下)比較 (マルチパスエラーなし)



分析:中基線では、三周波数の二つの方法は、両方ともASRを改善する; 長基線より、超長基線におけるASRのほうがさらに悪くなる;

二周波数と三周波数における、電離圏誤差は両方ともASRに影響する

二重差(DD)電離圏誤差と アンビギュイティ決定の関係

分析:三周波数であれば、AR の有効基線が延長する

結論と今後の課題

d

結論

三周波数と現在の二周波数を比べる:

- ワイドレーン(L1L5)信号は雑音が小さくなる。ワイドレーン (L2L5)信号は波長が長くなる。
- 短基線と中基線では、ARが改善される。特に短基線の場合、一 日中のASRはほぼ99%以上である
- 短基線では、マルチパスエラーが存在する場合、ARが改善される
- 二重差電離圏誤差分析によると、基線長がほぼ30km(二周波数は ほぼ15km)までは、ASRは95%以上になる(DD電離圏誤差3ppm と仮定する場合)
- 長基線(ほぼ60km以上)は、ARがほとんど改善されない
- Geometry-Free方法により、基線長に影響されない。線形結合した信号の雑音が影響するが、連続信号時間平均すれば、ARが改善される。

今後の課題

- 探索空間(Search Spacing)を小さくなるため、 新しいAR方法を数学的に研究する。
- 長距離の場合、三周波数でも、AR高速化のために、電離圏の測定をする必要がある。そして、高精度リアル・タイム(または準リアル・タイム)の日本上空電離圏モデルを作る

ありがとうございました