

Comparison of Multipath Mitigation Techniques with Consideration of Future Signal Structures

M. Irsigler, <u>B. Eissfeller</u>

Institute of Geodesy and Navigation University FAF Munich Germany

Overview

Performance analysis for several multipath mitigation techniques

- Narrow Correlator[™]
- Double Delta Correlator
- Early/Late Slope Technique (ELS)
- Early1/Early2 (E1/E2) Tracker
- Consideration of BPSK and BOC signals
 - BPSK(1) representing the current GPS C/A code
 - BOC(2,2) representing one Galileo signal option
- Background/Motivation:
 - Multipath is dominating error source for many GNSS applications
 - Different types of signals will be available in the future

>> how do they perform in a multipath environment?

Introduction

Errors caused by multipath depend on a variety of signal and receiver parameters:

- Signal type/modulation scheme
- Pre-correlation bandwidth
- Pre-correlation filter characteristics
- Chipping rate of code
- Type of discriminator
- Chip spacing d between correlators used for tracking
- Carrier frequency
- \checkmark Multipath relative amplitude α
- Actual number of multipath signals
- Geometric path delay of multipath signal(s)

Signal and Receiver Parameters

SIGNAL PARAMETERS	GPS C/A Code	Galileo Signal Option		
Frequency Band	L1	E2-L1-E1		
Center Frequency	1575.42 MHz	1575.42 MHz	RECEIVER]
Modulation Scheme	BPSK(1)	BOC(2,2)	PARAMETERS	
Chipping Rate	1.023 MHz	2.046 MHz	Pre-Corr. Bandwidth	32 MHz
Chip Length	293,05 m	146,53 m	Band Limiting Filter	Ideal Band Pass Filter
Data Rate	50 bit/s	200 bit/s	Discriminator	1-Chip Early minus Late

Further assumptions (multipath environment):

- \checkmark Direct signal always available \checkmark Multipath relative amplitude α =0.5
- ✓ One multipath signal ✓ Static environment

Wide (Standard) Correlator (d=1)

 Maximum multipath error (nearly) identical for both signals •BOC(2,2) sensitive to mediummultipath

Narrow Correlation Technique

✓ 2 Correlators with small spacing between early and late code (d < 1)
 ✓ NovAtel's Narrow Correlator[™]: d = 0.1

✓ Results:

- Maximum multipath error nearly identical for both signals
- BOC(2,2) less sensitive to long-delay multipath

$\Delta\Delta$ Correlator

✓ Basic concept:

- 5 Correlators (E1,E2,P,L1,L2)
- Discriminator function: D = a(E1 L1) b(E2 L2)
- Several discriminator functions can be set up (variation of a and b)
 - Strobe Correlator[™] (Ashtech):
 - High Resolution Correlator (HRC):
- ✓ Strobe vs. HRC:
 - Different amplitudes
 - Same shape
 - >> Same multipath performance
 expected

 $D = 2^{*}(E1 - L1) - (E2 - L2)$

 $D = (E1 - L1) - 0.5^*(E2 - L2)$

$\Delta\Delta$ Correlator: Code Multipath

✓ HRC discriminator function: D = (E1 - L1) - 0.5* (E2 - L2)

✓ Results:

- Maximum multipath error nearly identical for both signals
- BOC(2,2) sensitive to medium-delay multipath
- BPSK(1) <u>not</u> sensitive to medium-delay multipath
- BOC(2,2) less sensitive to long-delay multipath

ION GPS 2003, Portland, Oregon - 8

$\Delta\Delta$ Correlator: Carrier Multipath

 HRC concept proposes synthesized punctual correlator for carrier tracking

Results:

- Maximum multipath error identical for both signals
- BOC(2,2) sensitive to medium-delay multipath
- BPSK(1) <u>not</u> sensitive to medium-delay multipath
- BOC(2,2) less sensitive to long-delay multipath

Early/Late Slope Technique (ELS)

- ✓ Basic concept:
 - 2 correlator pairs at both sides of the correlation function
 - Determination of slopes a₁ and a₂
 - Computation of pseudorange correction T by intersecting two first-order polynomials defined by (K₁,K₂) and (K₃,K₄)
- Introduced to GPS receivers by NovAtel as "Multipath Elimination Technology" (MET)

Early/Late Slope Technique: Code Multipath

Computation of code error envelopes by comparing the pseudorange correction *T* with the actual peak location

Remarks:

- Multipath performance strongly depends on actual correlator configuration
- Slight changes of τ₁,...,τ₄ result in fairly different error envelopes
- impossible to make general statement whether the BPSK(1) or the BOC(2,2) performs better

Early1/Early2 (E1/E2) Tracking

- 2 correlators (E1,E2) located on the early slope of the correlation function
- ✓ Amplitudes at E1,E2 are used to compute error function ∆R

Results:

 Multipath errors are zero for path delays greater than (1+E2)

-1.5

-1

-0.5

0.5

0

ACF

Distorted

Direct Signal
 Multipath Signal

ampound Signal

Position of E1 (dist.) Position of E2 (dist.) Position of E1 (undist.) Position of E2 (undist.)

1.5

1

- maximum ranging error of BOC(2,2) much larger than that of BPSK(1)
- BPSK(1) less sensitive to short-delay multipath

Issues:

- Shape of undistorted correlation function must be known (R=A2/A1)
- Degraded noise performance (reduced signal power at tracking point)

Summary

Results:

- Double Delta shows the best overall code multipath performance
- E1/E2 Tracker produces large maximum multipath errors (worst multipath performance for short- and medium-delay multipath)
- BOC(2,2) outperforms BPSK(1) for long-delay multipath (path delays > 0.5 chips)

ION GPS 2003, Portland, Oregon - 13

•