Smartphone positioning optimization based on GNSS/IMU integration and Al-Based stop detection

2355029 SHEN SHILIN

SUPERVISOR: PROF. NOBUAKI KUBO

Overview

Background

GNSS-Based Positioning

IMU-Based Optimization and Integration Method

Al-Based IMU Stop Detection Method

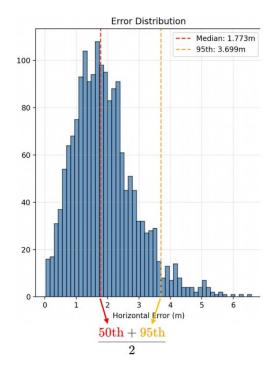
Stop Detection Method Comparison

Experimental Results and Evaluation

Background

Motivation:

Participation in the Google Smartphone Decimeter Challenge 2023–2024


Research Goal:

Develop smartphone positioning program by myself

Post processing

Google Smartphone Decimeter Challenge 2023-2024

Overview	Data Code	Models	Discussion	Leaderboard	Rules	
13	審詩霖SHEN S	Shilin			File	Daldih ayınlayan Caana
					гие	Rtklibexplorer Score
					2021-12-07-19-22-us-ca-lax-d	2.57
					2021-12-07-22-21-us-ca-lax-g	2.07
	H	orizont	al positio	ning errors	2021-12-08-17-22-us-ca-lax-a	1.04
					2021-12-08-18-52-us-ca-lax-b	2.74
					2021-12-08-20-28-us-ca-lax-c	1.69
					2021-12-09-17-06-us-ca-lax-e	1.83
					2022-01-11-18-48-us-ca-mtv-n	3.46
					2022-04-01-18-22-us-ca-lax-t	24.78
					2022-05-13-20-57-us-ca-mtv-pe1	1.25
					2023-03-08-21-34-us-ca-mtv-u	1.93
					2023-09-06-00-01-us-ca-routen	3.34
					2023-09-06-18-47-us-ca	2.62
					2023-09-07-19-33-us-ca	2.45
					2023-09-07-22-47-us-ca-routebc2	2.14
					Final Score	3.85

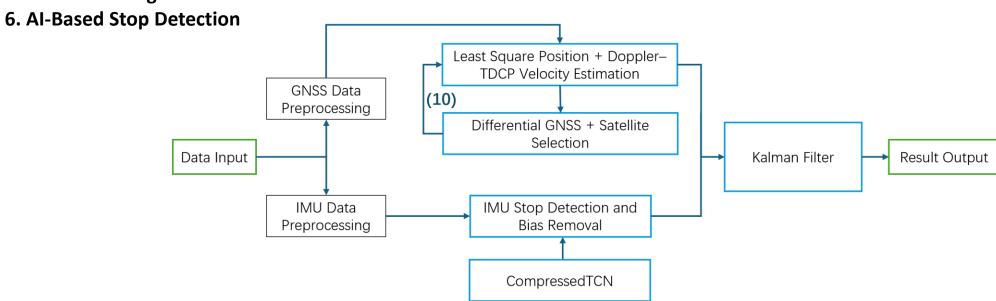
Data Collection

For data collection, GSDC used a car and fixed several smartphones near the front windshield using a special holder. To make sure all phones were in the same position each time, using 3D-printed parts and a robot arm to measure and check smartphone location carefully.

Smartphone Types:

Three major brands were used for data collection:

Brand	Models	•	
Google	Pixel Series		Pixel 6 pr
Xiaomi	Mi 8 Series		
Samsung	S Series		



Technical Objectives

- 1. Multi-Sensor Fusion
- 2. Differential GNSS
- 3. Carrier-Phase Differencing (TDCP)
- 4. Kalman Filter Design
- 5. IMU Denoising with Butterworth Low-Pass Filter

Performance Objective & Theoretical Contribution

Performance Objective

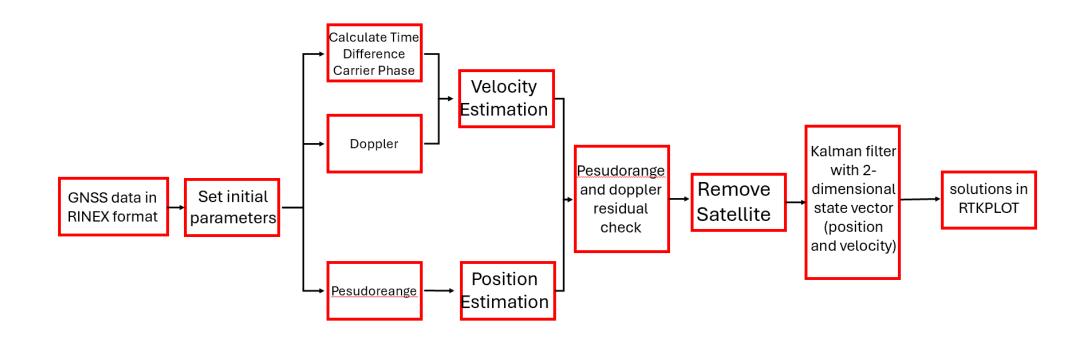
Reduce the average 2D positioning error from over 30 meters to less than 7 meters (2DRMS) on the GSDC dataset, and ensure the system works in real time for various urban scenarios.

Theoretical Contribution

Provide theoretical support and real-world experiments to push forward the use of AI-enabled GNSS/IMU systems for smartphones.

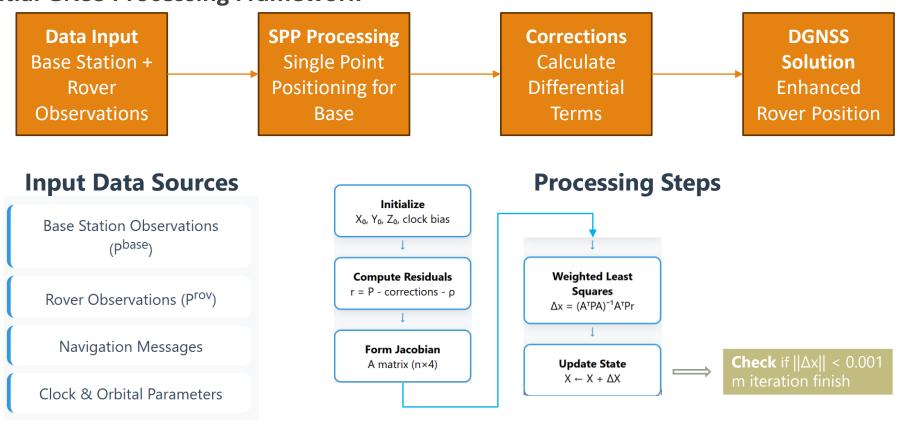
GNSS-Based Positioning

GNSS Data Preprocessing


Differential GNSS Algorithms for Position Estimation

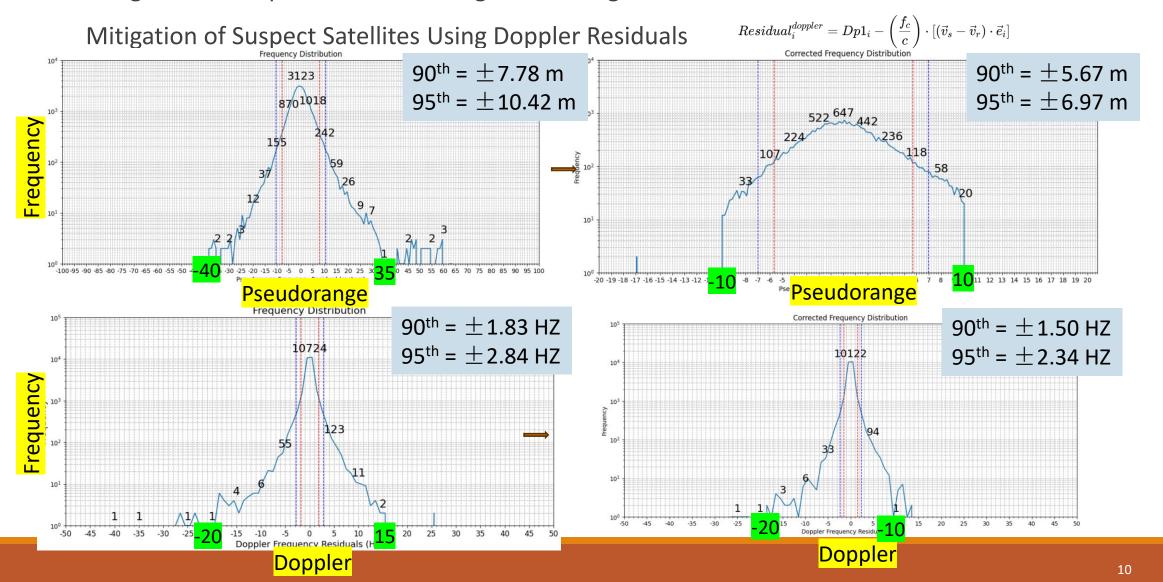
Doppler and TDCP Velocity Fusion Strategy for Velocity Estimation

Suspect Satellite Removal


GNSS position-velocity integration Positioning Algorithm

GNSS positioning framework

Differential GNSS Algorithms for Position Estimation


Differential GNSS Processing Framework

Suspect Satellite Removal

Mitigation of Suspect Satellites Using Pseudorange Residuals

$$r_i^{rov} = P_i^{rov} + SV_corrtime_i + Correction_i -
ho_i^{rov}$$

Doppler and TDCP for Velocity Estimation

Gross Error Threshold (5.0 m/s):

$$\left| \hat{v}_{lat}^{TDCP} - \frac{\hat{v}_{lat}^{Doppler} + v_{lat}^{pre}}{2} \right| < 5.0 \qquad TDCP_i = \frac{CP_i(t_2) - CP_i(t_1)}{\Delta t}$$

Velocity Fusion Strategy

$$\left| \frac{\hat{v}_{lon}^{Doppler} - \hat{v}_{lon}^{Doppler} + v_{lon}^{pre}}{2} \right| < 5.0$$
 Velocity Decision

 $\begin{vmatrix} \hat{v}_{lon}^{TDCP} - \frac{\hat{v}_{lon}^{Doppler} + v_{lon}^{pre}}{2} \end{vmatrix} < 5.0$ $\mathbf{v}_{final} = \begin{cases} \mathbf{v}_{TDCP}, & \text{if TDCP passes both threshold tests} \\ \mathbf{v}_{Doppler}, & \text{otherwise} \end{cases}$

GNSS signals sometimes are

missing. If we can

Significance Threshold (1.0 m/s):

$$\left| \hat{v}_{lat}^{TDCP} - \frac{\hat{v}_{lat}^{Doppler} + v_{lat}^{pre}}{2} \right| > 1.0$$

$$\left| \hat{v}_{lon}^{TDCP} - \frac{\hat{v}_{lon}^{Doppler} + v_{lon}^{pre}}{2} \right| > 1.0$$

- Mitigation of Suspect Satellites
- GNSS position-velocity integration Positioning Algorithm

Kalman Filter

observation equation

$$\mathbf{x}_k = egin{bmatrix} x_k \ y_k \ v_{x,k} \ v_{y,k} \end{bmatrix} \mathbf{z}_k = egin{bmatrix} x_k^{ ext{obs}} \ y_k^{ ext{obs}} \ v_{x,k}^{ ext{obs}} \ v_{y,k}^{ ext{obs}} \end{bmatrix} = \mathbf{H}\mathbf{x}_k + \mathbf{v}_k$$

Prediction step:

Update step:

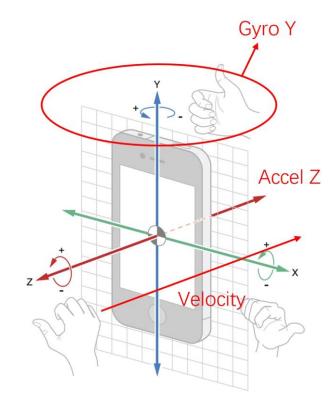
detect stop by IMU the result could be improved

$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{F}\hat{\mathbf{x}}_{k-1|k-1} \ \mathbf{P}_{k|k-1} = \mathbf{F}\mathbf{P}_{k-1|k-1}\mathbf{F}^{ op} + \mathbf{Q}$$

$$\mathbf{K}_k = \mathbf{P}_{k|k-1}\mathbf{H}^{\top} \left(\mathbf{H}\mathbf{P}_{k|k-1}\mathbf{H}^{\top} + \mathbf{R}\right)^{-1}$$
 $\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \left(\mathbf{z}_k - \mathbf{H}\hat{\mathbf{x}}_{k|k-1}\right)$
 $\mathbf{P}_{k|k} = \left(\mathbf{I} - \mathbf{K}_k\mathbf{H}\right)\mathbf{P}_{k|k-1}$

IMU-Based
Optimization
and Integration
Method

Data Source and Characteristics


Synchronization and Resampling

Low-Pass Filter

Threshold-Based Stop Detection Algorithm

Data Source and Characteristics

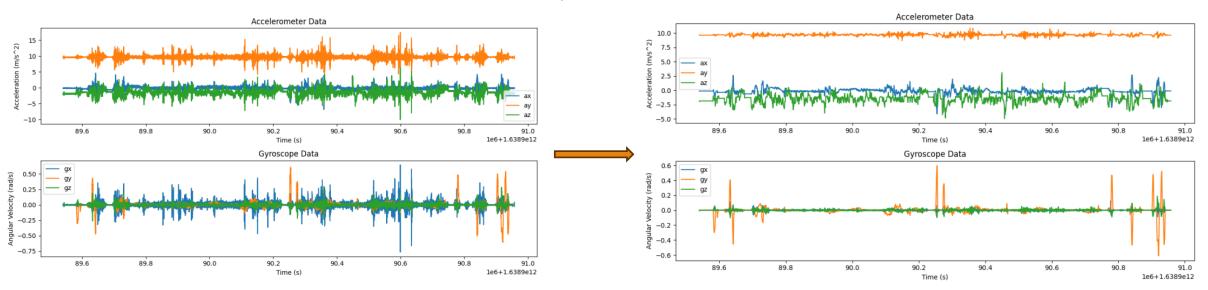
- device_imu.csv → Raw IMU values
- **utcTimeMillis**: The timestamp of each measurement expressed in milliseconds since the Unix epoch (January 1, 1970, UTC);
- MessageType: An identifier indicating the sensor type, distinguishing between accelerometer data (UncalAccel) and gyroscope data (UncalGyro);
- MeasurementX, MeasurementY, MeasurementZ: The raw measurement values along the device coordinate frame's X, Y, and Z axes, provided in units of m/s² for accelerometers and rad/s for gyroscopes.

Synchronization and Resampling

- 1. Sliding Window Averaging Resampling
- 2. Linear Interpolation for Missing Data

Raw IMU Data Structure

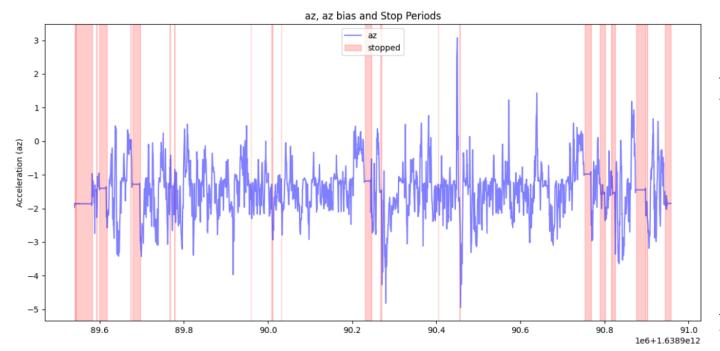
utcTimeMillis	AccelerateX	AccelerateY	AccelerateZ	GyroscopeX	GyroscopeY	GyroscopeZ
1638989539917	-0.14416756	9.672985	-1.9513469			
1638989539922				-0.0074831	-0.00503964	-0.002138
1638989539926	-0.10169496	9.6173525	-1.7934206			
1638989539935	-0.13938192	9.559925	-1.8173488			
1638989539940				-0.0009163	-0.00106901	-0.001069
1638989539945	-0.13459627	9.592826	-1.8837496			
1638989539954	-0.12981063	9.602397	-1.8604196			
1638989539958				-0.0038179	-0.00122173	-0.0007636
1638989539963	-0.12023934	9.559925	-1.7934206			
1638989539972	-0.09212367	9.626924	-1.8077775			
1638989539977				0.00580322	0	0.00045815
1638989539981	-0.15792629	9.653843	-2.012962			
1638989539990	-0.08793623	9.669994	-1.841277			
1638989539995				-0.0056505	-0.0009163	0.00045815
1638989540000	-0.11066805	9.531809	-1.783251			
1638989540009	-0.12981063	9.5455675	-1.7886349			
1638989540013				0.00610865	0.000458149	-0.0006109
1638989540018	-0.15373886	9.64487	-1.9411774			
1638989540027	-0.10169496	9.65504	-1.8891335			


After Synchronization and Resampling (100HZ)

utcTimeMillis	AccelerateX	AccelerateY	AccelerateZ	GyroscopeX	GyroscopeY	GyroscopeZ
1638989539910	-0.14416756	9.672985	-1.9513469	-0.0074831	-0.00503964	-0.002138
1638989539920	-0.10169496	9.6173525	-1.7934206	-0.0074831	-0.00503964	-0.002138
1638989539930	-0.13938192	9.559925	-1.8173488	-0.0041997	-0.00305433	-0.0016035
1638989539940	-0.13459627	9.592826	-1.8837496	-0.0009163	-0.00106901	-0.001069
1638989539950	-0.12981063	9.602397	-1.8604196	-0.0038179	-0.00122173	-0.0007636
1638989539960	-0.12023934	9.559925	-1.7934206	0.00099266	-0.00061087	-0.0001527
1638989539970	-0.09212367	9.626924	-1.8077775	0.00580322	0	0.00045815
1638989539980	-0.15792629	9.653843	-2.012962	7.64E-05	-0.00045815	0.00045815
1638989539990	-0.08793623	9.669994	-1.841277	-0.0056505	-0.0009163	0.00045815
1638989540000	-0.12023934	9.53868825	-1.785943	0.00022907	-0.00022907	-7.64E-05
1638989540010	-0.15373886	9.64487	-1.9411774	0.00610865	0.000458149	-0.0006109
1638989540020	-0.10169496	9.65504	-1.8891335	0.00114537	-7.64E-05	7.64E-05
1638989540030	-0.07716853	9.564711	-1.8311075	-0.0038179	-0.00061087	0.00076358
1638989540040	-0.10169496	9.598209	-1.8364913	-0.0013744	-0.00038179	0.00022907
1638989540050	-0.10169496	9.640682	-1.9124635	0.00106901	-0.00015272	-0.0003054
1638989540060	-0.10169496	9.602996	-1.7886349	-0.0007636	-0.00061087	-0.0004581
1638989540070	-0.11126626	9.593424	-1.7886349	0.00015272	-0.00053451	-0.0001527
1638989540080	-0.14416756	9.644272	-1.9842482	0.00106901	-0.00045815	0.00015272
1638989540090	-0.12562318	9.659226	-1.9274186	-0.0006109	-0.00022907	-0.0003818

Low-Pass Filter

Butterworth low-pass filter


$$H(s) = \frac{1}{\sqrt{1 + \left(\frac{s}{\omega_c}\right)^{2n}}}$$

Threshold-Based Stop Detection Algorithm

The algorithm defines adaptive thresholds based on the minimum observed standard deviation values. A time point t is considered a potential stop if all of the following conditions are satisfied:

$$\sigma_a(t) < \min(\sigma_a) + 0.01, \quad \sigma_\omega(t) < \min(\sigma_\omega) + 0.01, \quad \|\omega(t)\| < 0.05$$

$$is_stopped(t) = \begin{cases} 1, & \text{if all conditions are satisfied} \\ 0, & \text{otherwise} \end{cases}$$

Threshold-Based Stop detection performance

File	Accuracy (%)	Precision (%)	Recall (%)	
2021-12-07-19-22-us-ca-lax-d	98.24	95.32	87.63	
2021-12-07-22-21-us-ca-lax-g	96.03	99.48	87.50	
2021-12-08-17-22-us-ca-lax-a	97.16	85.57	75.45	
2021-12-08-18-52-us-ca-lax-b	98.03	100.00	79.71	
2021-12-08-20-28-us-ca-lax-c	97.18	99.32	85.47	
2021-12-09-17-06-us-ca-lax-e	98.46	100.00	88.67	
2022-01-11-18-48-us-ca-mtv-n	95.76	99.51	83.82	Improvo 2
2022-04-01-18-22-us-ca-lax-t	97.89	91.07	66.23	Improve?
2022-05-13-20-57-us-ca-mtv-pe1	97.13	94.67	72.45	A
2023-03-08-21-34-us-ca-mtv-u	98.09	100.00	83.20	T
2023-09-06-00-01-us-ca-routen	97.64	100.00	91.06	
2023-09-06-18-47-us-ca	98.92	100.00	79.22	/
2023-09-07-19-33-us-ca	96.69	85.71	82.76	
2023-09-07-22-47-us-ca-routebc2	98.36	98.37	92.80	
Total Average	97.54	96.36	82.57	r

AI-Based IMU Stop Detection Method

Data Source and Label Generation

Model Architecture & Residual Dilated Convolution & Receptive Field

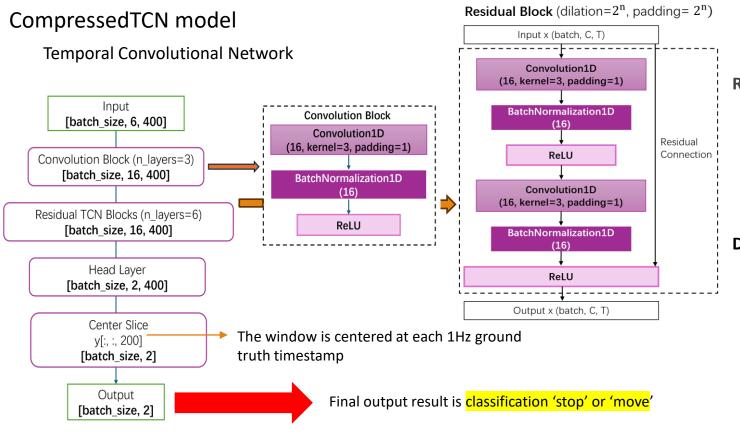
Training Result and Stop Performance

Data Source and Label Generation

The ground truth trajectories are provided at a frequency of 1 Hz. Serve as the label y.

Labeling rule: If position is nearly unchanged for at least 5 seconds, it's labeled as "stop";

otherwise, "move".

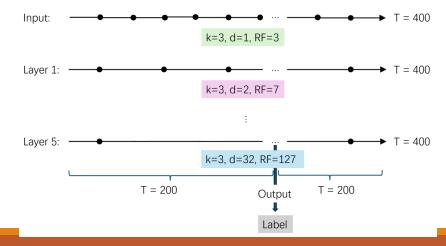

Α	В	C	D	E	F
MessageT	Provider	LatitudeDegrees	LongitudeDegrees	AltitudeMe	SpeedMps
Fix	GT	34.1759672	-118.4652808	178.3346	0.001414
Fix	GT	34.1759672	-118.4652808	178 33/16	0.001/114
Fix	GT	34.1759672	-118.4652808	>= 5 sec	ond 36
Fix	GT	34.1759672	-118.4652808	1/8.3336	0.002237
Fix	GT	34.1759672	-118.4652808	178.3336	0.002235
Fix	GT	34.1759671	-118.4652808	178.3326	0.003604
Fix	GT	34.1759671	-118.4652808	178.3306	0
Fix	GT	34.1759654	-118.4652807	178.3246	0.520642
Fix	GT	34.175958	-118.4652784	178.3236	1.134147
Fix	GT	34.175946	-118.465272	178.3086	1.682416
Fix	GT	34.1759299	-118.4652622	178.2876	2.337498
Fix	GT	34.1759103	-118.4652497	178.2806	2.53507
Fix	GT	34.1758888	-118.4652372	178.2196	2.848074
Fix	GT	34.1758615	-118.4652244	178.1956	3.42567

Feature Design:

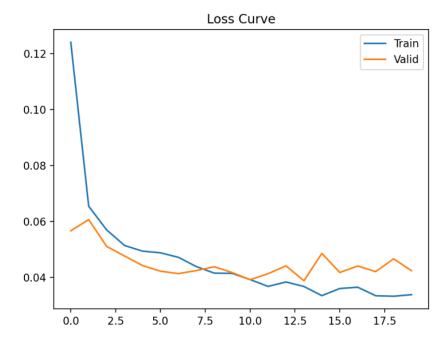
Six channels from the IMU: AccelerateX, AccelerateY, AccelerateZ and GyroscopeX, GyroscopeY, GyroscopeZ. Frequency of 100 Hz. Serve as the input tensor x.

Model Architecture & Residual Dilated Convolution & Receptive Field

Python 3.12. PyTorch



Receptive Field Design


Receptive field calculation for each layer in CompressedTCN

Layer Index	Dilation Rate (d)	Receptive Field (RF)
0	1	3
1	2	7
2	4	15
3	8	31
4	16	63
5	32	127

Dilated convolutions and receptive field

Training Result and Stop Performance

Epoch	Train Loss	Train Accuracy	Valid Loss	Valid Accuracy	
20	0.0338	0.9878	0.0424	0.9850	

Classification Report on Validation Set

Label	Precision	Recall	F1-score	Support
0 (Static) 1 (Moving)	0.9950 0.9311	0.9874 0.9716	0.9912 0.9509	3409 598
Accuracy Macro Avg Weighted Avg	0.9630 0.9854	0.9850 0.9795 0.9850	0.9710 0.9852	4007 4007 4007

Al-based Stop detection performance

Trajectory	AI-based				
	Accuracy (%)	Precision (%)	Recall (%)		
2021-12-07-19-22-us-ca-lax-d	98.92	93.87	97.07		
2021-12-07-22-21-us-ca-lax-g	98.67	97.60	98.25		
2021-12-08-17-22-us-ca-lax-a	97.92	84.25	91.45		
2021-12-08-18-52-us-ca-lax-b	98.66	92.95	94.77		
2021-12-08-20-28-us-ca-lax-c	98.37	95.95	95.40		
2021-12-09-17-06-us-ca-lax-e	99.18	98.65	95.42		
2022-01-11-18-48-us-ca-mtv-n	98.94	97.66	98.43		
2022-04-01-18-22-us-ca-lax-t	99.32	93.90	93.90		
2022-05-13-20-57-us-ca-mtv-pe1	98.20	96.84	84.79		
2023-03-08-21-34-us-ca-mtv-u	99.46	96.83	98.39		
2023-09-06-00-01-us-ca-routen	98.97	97.37	98.89		
2023-09-06-18-47-us-ca	99.73	95.45	100.00		
2023-09-07-19-33-us-ca	99.08	95.31	96.83		
2023-09-07-22-47-us-ca-routebc2	99.27	97.99	98.24		
Total Average	98.80	94.92	95.51		

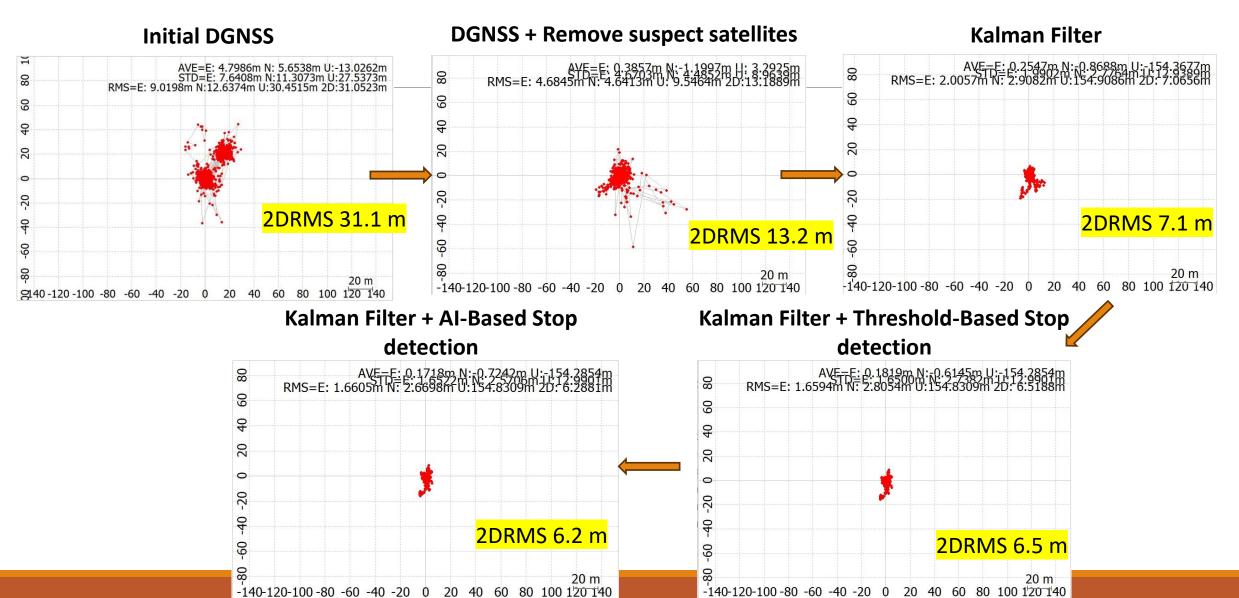
Stop Detection Method Comparison

Trajectory		Traditional			AI-based	
	Accuracy (%)	Precision (%)	Recall (%)	Accuracy (%)	Precision (%)	Recall (%)
2021-12-07-19-22-us-ca-lax-d	98.24	95.32	87.63	98.92	93.87	97.07
2021-12-07-22-21-us-ca-lax-g	96.03	99.48	87.50	98.67	97.60	98.25
2021-12-08-17-22-us-ca-lax-a	97.16	85.57	75.45	97.92	84.25	91.45
2021-12-08-18-52-us-ca-lax-b	98.03	100.00	79.71	98.66	92.95	94.77
2021-12-08-20-28-us-ca-lax-c	97.18	99.32	85.47	98.37	95.95	95.40
2021-12-09-17-06-us-ca-lax-e	98.46	100.00	88.67	99.18	98.65	95.42
2022-01-11-18-48-us-ca-mtv-n	95.76	99.51	83.82	98.94	97.66	98.43
2022-04-01-18-22-us-ca-lax-t	97.89	91.07	66.23	99.32	93.90	93.90
2022-05-13-20-57-us-ca-mtv-pe1	97.13	94.67	72.45	98.20	96.84	84.79
2023-03-08-21-34-us-ca-mtv-u	98.09	100.00	83.20	99.46	96.83	98.39
2023-09-06-00-01-us-ca-routen	97.64	100.00	91.06	98.97	97.37	98.89
2023-09-06-18-47-us-ca	98.92	100.00	79.22	99.73	95.45	100.00
2023-09-07-19-33-us-ca	96.69	85.71	82.76	99.08	95.31	96.83
2023-09-07-22-47-us-ca-routebc2	98.36	98.37	92.80	99.27	97.99	98.24
Total Average	97.54	96.36	82.57	98.80	94.92	95.51

Experimental Results and Evaluation

Data: 14 different trajectories in the training dataset

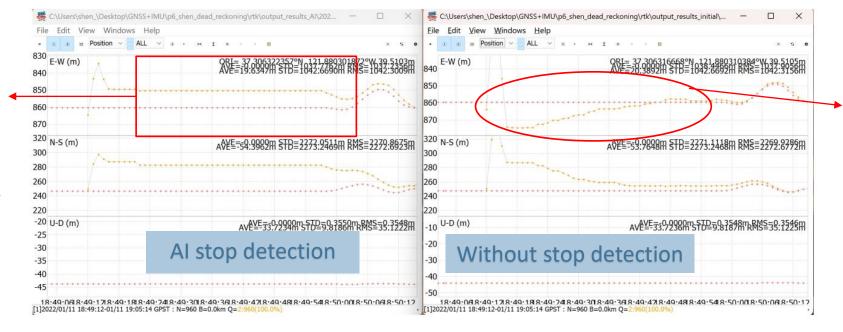
representative trajectory: 2021-12-08-18-52-us-ca-lax-b


Program Setting

Mask angle 10.0 Rov obs train\2021-12-07-19-22-us-ca-lax-d\pixel6pro\supplemental\gnss log.obs Ref obs train\2021-12-07-19-22-us-ca-lax-d\vdcy3410.obs Nav file train\2021-12-07-19-22-us-ca-lax-d\BRDM00DLR S 20213410000 01D MN.nav POSreflat 34.17856659 POSreflon -118.22000501 POSrefhat 318.230 Code noise 0.025 Carrier noise 0.005 Iteration 2900 Threshold cn 28.0 **RTK DGNSS 1** Ratio limit 2.0 GPS 1 QZSS 1 **GALILEO 1** BEIDOU 0 **GLONASS 1 GPSWEEK 2187**

The trajectory located in the San Fernando Valley area of Los Angeles, California, USA. The route begins near Highway 101.

Positioning results showing 2DRMS distribution


14 trajectories Horizontal positioning errors

File	Rtklibexplorer Score	File	GNSS Only (m)	GNSS+IMU Traditional (m)	GNSS+IMU AI-Base (m)
2021-12-07-19-22-us-ca-lax-d	2.57	2021-12-07-19-22-us-ca-lax-d	2.982	3.036	2.81
2021-12-07-22-21-us-ca-lax-g	2.07	2021-12-07-15-22-ds ed lax d	3.75	3.207	2.764
2021-12-08-17-22-us-ca-lax-a	1.04	2021-12-08-17-22-us-ca-lax-a	3.113	3.357	3.202
2021-12-08-18-52-us-ca-lax-b	2.74	2021-12-08-17-22-us-ca-lax-a	4.38	4.354	4.385
2021-12-08-20-28-us-ca-lax-c	1.69				
2021-12-09-17-06-us-ca-lax-e	1.83	2021-12-08-20-28-us-ca-lax-c	2.942	2.811	2.813
2022-01-11-18-48-us-ca-mtv-n	3.46	2021-12-09-17-06-us-ca-lax-e	3.376	3.287	3.092
2022-04-01-18-22-us-ca-lax-t	24.78	2022-01-11-18-48-us-ca-mtv-n	5.706	21.588	19.415
2022-05-13-20-57-us-ca-mtv-pe1	1.25	2022-04-01-18-22-us-ca-lax-t	6.345	6.374	6.411
2023-03-08-21-34-us-ca-mtv-u	1.93	2022-05-13-20-57-us-ca-mtv-pe1	2.425	2.399	2.389
2023-09-06-00-01-us-ca-routen	3.34	2023-03-08-21-34-us-ca-mtv-u	3.472	3.267	3.294
2023-09-06-18-47-us-ca	2.62	2023-09-06-00-01-us-ca-routen	4.059	3.376	3.12
2023-09-07-19-33-us-ca	2.45	2023-09-06-18-47-us-ca	4.188	4.198	4.177
2023-09-07-22-47-us-ca-routebc2		2023-09-07-19-33-us-ca	2.917	2.885	2.813
Final Score	3.85 3.880	2023-09-07-22-47-us-ca-routebc2	3.088	2.884	2.736
	Average (excludin	ng 2022-01-11-18-48-us-ca-mtv-n):	3.618	3.495	3.385

Failure Case Analysis

Initial DGNSS positioning contain a large offset.

AI-based stop detection freezes the position at starting and prevents Kalman filter from adjusting the positioning.

Without stop detection, the Kalman filter gradually corrects the position using continuous GNSS velocity updates.

Conclusion

This study I build up a simple positioning system for smartphones by myself, shows my exploration and learning in the GNSS field.

- On the GNSS side, DGNSS, remove suspect satellites, and combine TDCP and doppler velocity estimation to get position and velocity. Kalman filter achieves GNSS position-velocity integration.
- •On the IMU side, synchronization and resampling, Butterworth low-pass filter remove noise. At first, I use a Threshold-Based Stop detection. After, an AI model CompressedTCN helps make the recall more reliable.

Tests on real data show that these methods together can reduce positioning errors to 2-4 meters.

Limitations

- Sensor Bias
- 2. Limited Dataset Scope
- 3. Kalman Filter Architecture
- 4. Lack of IMU data integrate in Model
- 5. Assumption of Spherical Earth
- 6. Positive Stop Detection

Future Work

- 1. Modeling sensor IMU bias
- 2. Using more different datasets
- 3. improving the of AI models through domain adaptation and semi-supervised learning
- 4. exploring EKF and FGO integration methods
- 5. implementing IMU GNSS integration
- 6. replacing hard stop constrained with soft unconstrained baseline estimates

Thank You!