RTK方式を利用した計時システムの基礎研究

海事システム工学科

学籍番号:1721063

和田山晃平

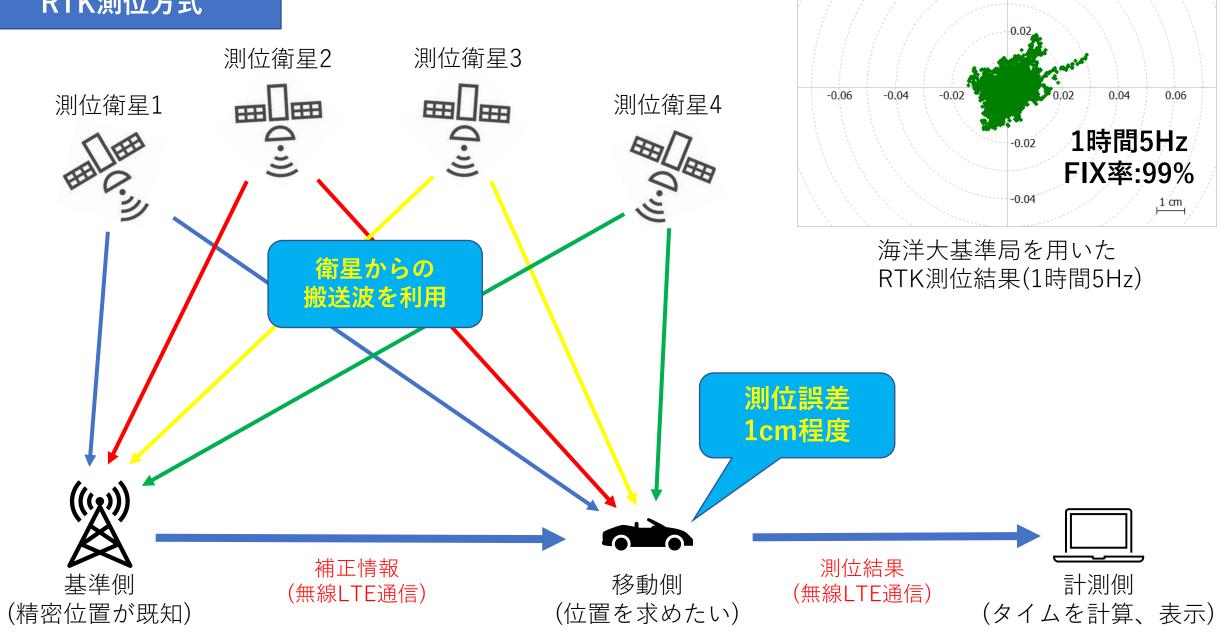
指導教員:久保信明 教授

目次

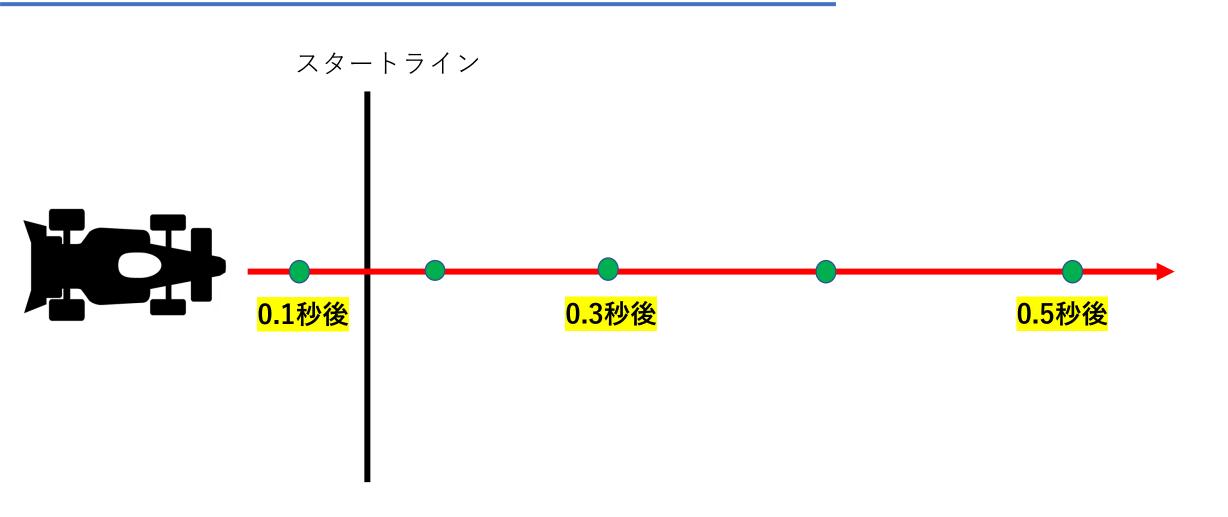
- 1. 研究背景
- 2. RTK測位方式について
- 3. 計時システムのタイム計測方法
- 4. 実験結果
- 5. まとめ

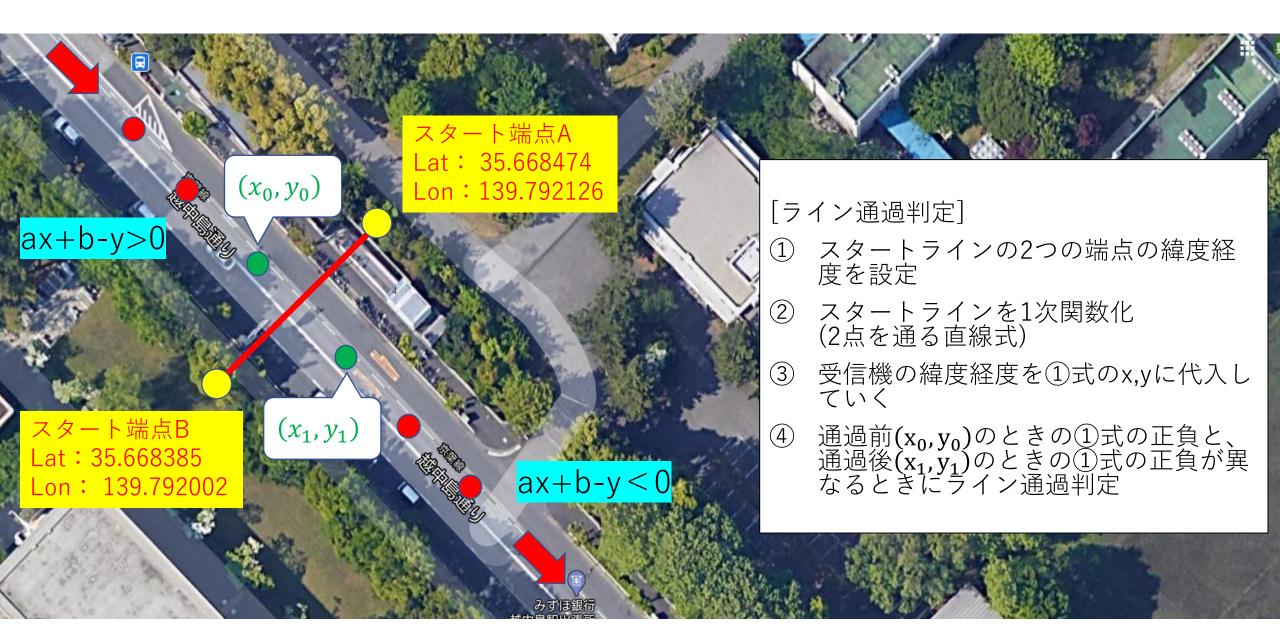
研究背景

赤外線センサーを利用した光電管装置 出典:SEIKO HP

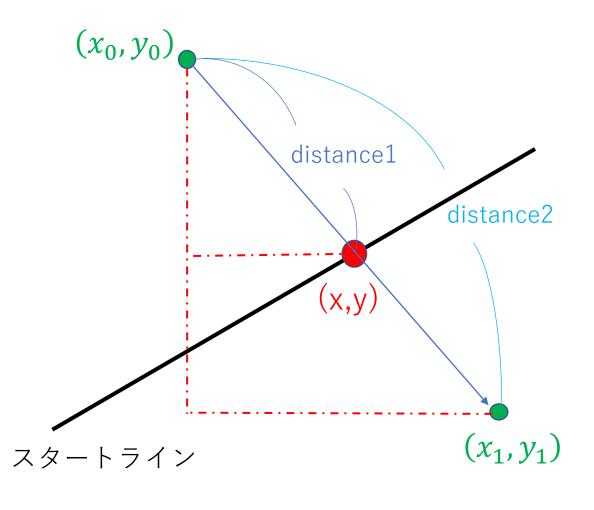


GNSS利用のドローン「AEROBO」 出典:みちびきHP




九州工業大学が作成したフォーミュラカー 出典:学生フォーミュラ公式サイト

RTK測位方式



スタート・フィニッシュライン通過判定

線形內挿法計算

- ① 通過前後の位置(x₀,y₀)、(x₁,y₁)の 2点から1次関数式を算出
- ② スタートラインの式との交点から ライン通過座標(x,y)を求める。
- ③ 三平方の定理より通過前後の距離の比を利用し通過時刻を求める。

ライン通過時刻 $= time_0 + \frac{distance1}{distance2} \times (time_1 - time_0)$

% $time_0$:通過前時刻 $time_1$:通過後時刻

シミュレーション

75.3m

- ・加速度は1Gを想定
- ・等加速度運動を仮定
- ・75mの直線コースを車両で走行することを仮定
- ・停止位置から0.3m先をスタートラインとし、停止位置から75.3m先をフィニッシュラインと設定

[スタート]

[フィニッシュ]

0.1秒内挿	内挿法タイム(s)	仮想真値 タイム(s)
0.01	0.242852	0.248
0.02	0.243672	0.248
0.03	0.244791	0.248
0.04	0.246178	0.248
0.05	0.246707	0.248
0.06	0.244721	0.248
0.07	0.24337	0.248
0.08	0.242572	0.248
0.09	0.242256	0.248
平均	0.244124	0.248

0.1秒内挿	内挿法タイム(s)	仮想真値 タイム(s)
0.01	3.91869	3.919
0.02	3.918776	3.919
0.03	3.918663	3.919
0.04	3.918577	3.919
0.05	3.918516	3.919
0.06	3.918482	3.919
0.07	3.918473	3.919
0.08	3.918489	3.919
0.09	3.918531	3.919
平均	3.918577	3.919

左:測位情報、経過時間

右:接続設定画面

ナリタモーターランド実験(11/17)

実験環境

●天候:晴れ

●使用通信アプリ

→基準側:RTKLIB STRSVR

移動側:RTKLIB STRSVR

計測側:作成したタイム計測アプリ

●ネット環境

→基準側:ポケットWi-Fi(Docomo)

移動側:通信キット(Docomo)

計測側:スマホのテザリング(Docomo)

引用:Google Maps

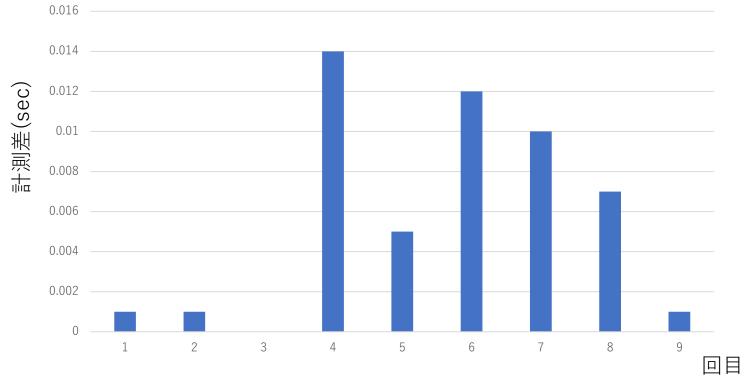
左:赤外線投光器

右:赤外線反射板

中央:計測結果履歴モニター

左:基準局アンテナ NovAtel社 GPS-702-GG Antena

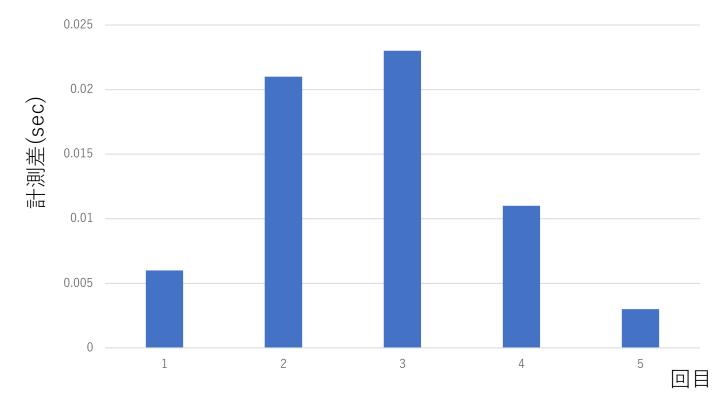
中央:移動側アンテナ ublox社 Multi-band GNSS antenna ANN-MB-00


右:計測側受信機 通信キット (ublox社 ZED-F9P)

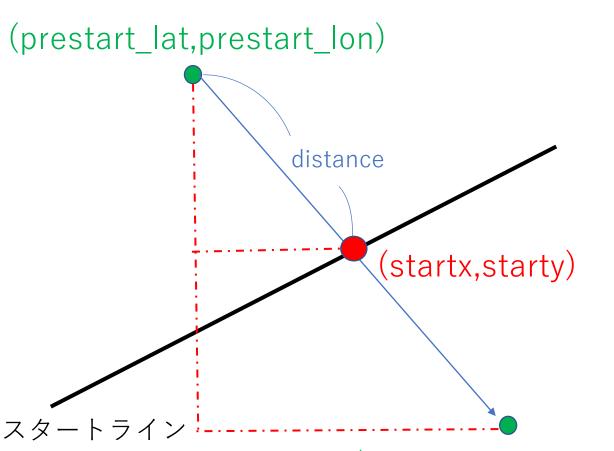
計測結果

●定速(35km/h)

	アプリ計測タイム	光電管計測タイム
1回目	46.419	46.42
2回目	46.391	46.39
3回目	46.530	46.53
4回目	46.264	46.25
5回目	46.375	46.37
6回目	46.352	46.34
7回目	47.120	47.11
8回目	46.347	46.34
9回目	45.751	45.75



計測結果


● 急発進

	アプリ計測タイム	光電管計測タイム
1回目	48.924	48.93
2回目	42.719	42.74
3回目	41.327	41.35
4回目	44.629	44.64
5回目	43.717	43.72

アプリ-光電管計測差

速度利用メソッド

- ① 等加速度運動の公式 distance = prespeed× (内挿秒) $+\frac{1}{2}$ × acceleration × (内挿秒) 2
- ② 2次方程式の解の公式より(内挿秒)を算出
- ③ 通過時刻 = *prestart_time* + (内挿秒)

% acceleration $(m/s^2) = \frac{|afspeed-prespeed|}{(aftime-pretime)}$

(afstart_lat,afstart_lon)

シミュレーション

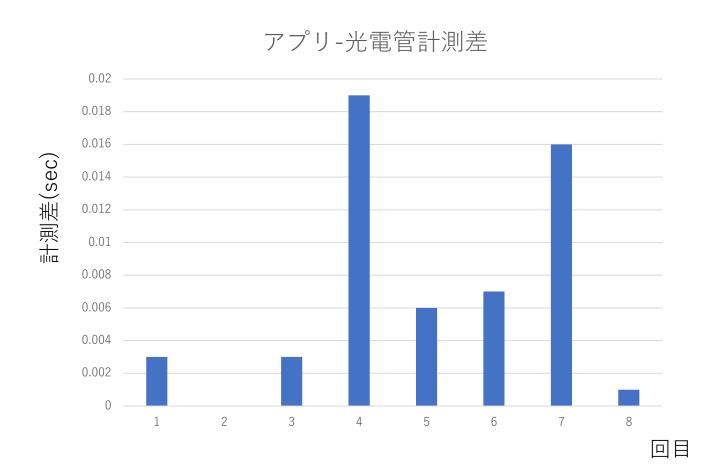
75.3m
0.3m

- ・加速度は1Gを想定
- ・等加速度運動を仮定
- ・75mの直線コースを車両で走行することを仮定
- ・停止位置から0.3m先をスタートラインとし、75.3m先をフィニッシュラインと設定

[スタート]

[フィニッシュ]

0.1秒内挿	内挿法タイム(s)	仮想真値 タイム(s)
0.01	0.247352	0.248
0.02	0.247352	0.248
0.03	0.247352	0.248
0.04	0.247352	0.248
0.05	0.247352	0.248
0.06	0.247352	0.248
0.07	0.247352	0.248
0.08	0.247352	0.248
0.09	0.247352	0.248
平均	0.247352	0.248


0.1秒内挿	内挿法タイム(s)	仮想真値 タイム(s)
0.01	3.918791	3.919
0.02	3.918791	3.919
0.03	3.918791	3.919
0.04	3.918791	3.919
0.05	3.918791	3.919
0.06	3.918791	3.919
0.07	3.918791	3.919
0.08	3.918791	3.919
0.09	3.918791	3.919
平均	3.918791	3.919

計測結果

●前半4回 定速

●後半4回 急発進

	アプリ計測タイム	光電管計測タイム
1回目	46.267	46.27
2回目	46.190	46.19
3回目	46.563	46.56
4回目	46.519	46.50
1回目	44.946	44.94
2回目	43.173	43.18
3回目	45.764	45.78
4回目	43.719	43.72

まとめ

• RTK測位方式における速度パラメータを利用したタイム計測メ ソッドではおおむね1/100秒精度でタイムを求めることができた。

• 実験中データ取得を完全に10Hzで行うことができていなかった。

今後の課題

- ・アプリの通信接続等、適切な通信環境の調査が必要
- ・複数台での同時計測も行えると良い