

都市部における GNSS 単独測位性能改善に関する研究 2019/02/15 情報通信工学研究室 冨永貴樹

Background and progress

- High demand for precise and robust GNSS navigation in the automotive market.
 - applications such as Autonomous Driving, ADAS, and V2X.
- GNSS SPP (Single Point Positioning) is still important for the "robust" navigation.
 - PPP/RTK lost compensation
 - Sensor calibration

Background and progress

- Implemented adaptive EKF to improve the GNSS SPP performance of a mass product receiver in an urban environment.
 - Performance : accuracy and precision, and its integrity.
 - This is the challenge in the urban canyon because of NLOS (Non-Line-Of-Sight) signal tracking.

Agenda

- Introduction to Adaptive Kalman Filter
 - Kalman filter
 - IAE(Innovation-based Adaptive Estimation)
 - Applying IAE to GNSS
- Adaptive EKF vs. Urban Canyon
 - Positioning accuracy and precision
 - Measurement error and predicted sigma
 - Integrity Information
- Conclusion and future works

- Introduction to Adaptive Kalman Filter
 - Kalman filter
 - IAE(Innovation-based Adaptive Estimation)
 - Applying IAE to GNSS
- Adaptive EKF vs. Urban Canyon
 - Positioning accuracy and precision
 - Measurement error and predicted sigma
 - Integrity Information
- Conclusion and future works

Hatch filter

Weighted-LS-based filter

Counts

Kalman filter

Extended-Kalman filter(EKF) 0 東京

Non-linear system

$$z = h(x) + \varepsilon$$

- By Taylor series,

$$h(x) = h(x_0) + H(x - x_0) + \cdots$$
$$H = \frac{\partial h(x)}{\partial x} \Big|_{x = x_0}$$

-Linearize: $z \sim h(x_0) + H(x - x_0) + \varepsilon$ $x = x_0 + H^{-1}(z - h(x_0)) + \varepsilon$

• EKF formulation,

$$\boldsymbol{x}_{k} = \boldsymbol{x}_{\bar{k}} + \boldsymbol{K}_{k} \big(\boldsymbol{z} - \boldsymbol{h}(\boldsymbol{x}_{\bar{k}}) \big)$$
$$\left(\lim_{\boldsymbol{R}_{k} \to 0} \boldsymbol{K}_{k} = \boldsymbol{H}^{-1} \right)$$

- Introduction to Adaptive Kalman Filter
 - Kalman filter
 - IAE(Innovation-based Adaptive Estimation)
 - Applying IAE to GNSS
- Adaptive EKF vs. Urban Canyon
 - Positioning accuracy and precision
 - Measurement error and predicted sigma
 - Integrity Information
- Conclusion and future works

IAE(Innovation-based Adaptive Estimation)

• Run KF with appropriate $\sigma_{z_k}^2$, which is <u>unknown</u>.

- Introduction to Adaptive Kalman Filter
 - Kalman filter
 - IAE(Innovation-based Adaptive Estimation)
 - Applying IAE to GNSS
- Adaptive EKF vs. Urban Canyon
 - Positioning accuracy and precision
 - Measurement error and predicted sigma
 - Integrity Information
- Conclusion and future works

Applying IAE to Outlier

Applying IAE to GNSS

Applying IAE to GNSS

- Process flow to create adaptive R_k .
- Adapt the innovation only when:
 - After EKF converged enough.
 - Larger than lower band threshold (SNR-based sigma).

- Introduction to Adaptive Kalman Filter
 - Kalman filter
 - IAE(Innovation-based Adaptive Estimation)
 - Applying IAE to GNSS
- Adaptive EKF vs. Urban Canyon
 - Positioning accuracy and precision
 - Measurement error and predicted sigma
 - Integrity Information
- Conclusion and future works

Urban Challenge

Test configurations

Date & Time	Nov.9 th .2015 10:00-18:00 (JST)
Test Area	Nishi-shinjuku, Tokyo
Antenna Type	Taoglas AA.171.301111
Antenna Place	Car roof
Raw Meas.	Furuno GN-8720
GNSS System	GPS/QZSS L1CA, GLONASS L10F
Masks	Elevation: 5[°], SNR: 33,34[dB-Hz]
Sampling Rate	1Hz
True Position	Applanix POSLV 520(Post Proc.)
EKF Types	Conventional EKF & Adaptive EKF

Horizontal position error

Vertical position error

国立大学法人

Tokvo University of Marine Science and Technology

Statistics for position error

Velocity error

Statistics for velocity error

Cumulative probability

Vertical velocity error[m/s]

国立大学法人

Tokyo University of Marine Science and Technology

		Mean	Error at	Error at	Error at
		error[m/s]	68.27%[m/s]	95.45%[m/s]	100%[m/s]
Horizontal	Adaptive EKF	0.010	0.12	0.73	6.92
	Conventional EKF	0.027	0.16	1.39	15.80
Vertical	Adaptive EKF	0.033	0.16	1.07	11.63
	Conventional EKF	0.146	0.23	2.19	-16.91

Summary for positioning

- The adaptive EKF achieved the impressive GNSS performance using the mass-product receiver in the dense urban environment.
 - The positioning accuracy and precision are drastically improved comparing with the conventional EKF.

- Introduction to Adaptive Kalman Filter
 - Kalman filter
 - IAE(Innovation-based Adaptive Estimation)
 - Applying IAE to GNSS
- Adaptive EKF vs. Urban Canyon
 - Positioning accuracy and precision
 - Measurement error and predicted sigma
 - Integrity Information
- Conclusion and future works

NLOS bias on measurement 👌

• Residuals of single difference
gives NLOS bias directly.

$$\rho^{i} = \gamma^{i} + \delta t + \delta_{NLOS}^{i} + \epsilon_{\rho^{i}}$$

$$\Delta \rho_{(residual)}^{QZSS,i} = (\rho^{i} - \rho^{QZSS}) - (\gamma_{(true)}^{i} - \gamma_{(true)}^{QZSS}) = \delta_{NLOS}^{i} + \epsilon_{\Delta\rho} QZSS,i$$

国立大学法人

東京海洋

Tokyo University of Marine Science and Technology

GPS PR error (lap04)

GLO PR error (lap04)

GPS RR error (lap04)

GLO RR error (lap04)

GPS PR error vs Adaptive σ (lap04)

国立大学法人

Tokyo University of Marine Science and Technology

GLO PR error vs Adaptive σ (lap04)

国立大学法人

okvo University of Marine Science and Technology

PR error vs SNR (lap04)

国立大学法人

RR error vs SNR (lap04)

国立大学法人

Tokvo University of Marine Science and Technology

Summary for meas. error

- Large NLOS bias can be found in both pseudorange and Doppler measurements.
- Adaptive σ matched the NLOS bias well.
 - While it was the challenge for conventional SNR-based σ estimation.
 - This is the exact reason why the single point positioning performance by the Adaptive EKF improved.

- Introduction to Adaptive Kalman Filter
 - Kalman filter
 - IAE(Innovation-based Adaptive Estimation)
 - Applying IAE to GNSS
- Adaptive EKF vs. Urban Canyon
 - Positioning accuracy and precision
 - Measurement error and predicted sigma
 - Integrity Information
- Conclusion and future works

- RTCA defines HPL (Horizontal Protection Level) and VPL (Vertical Protection Level) regarding to standard deviations.
 - Error ellipsoid: Standard deviation of semi-major Min axis of error ellipse (meters) North

$$\sigma_{Hmajor} = \sqrt{\frac{\sigma_e^2 + \sigma_n^2}{2} + \sqrt{\left(\frac{\sigma_e^2 - \sigma_n^2}{2}\right)^2 + \sigma_{en}^2}}_{HPL = k \cdot \sigma_{Hmajor}}$$

$$VPL = k \cdot \sigma_u$$

- RTCA suggests k=6.

PLs from covariance matrix

• Rotate the covariance matrix of the state vector from ECEF to ENU coordinates frame.

$$\boldsymbol{P}_{\boldsymbol{g}_{u,ENU}} = \boldsymbol{T}^{T} \boldsymbol{P}_{\boldsymbol{g}_{u}} \boldsymbol{T}$$
$$= \begin{pmatrix} \sigma_{e}^{2} & \sigma_{en} & \sigma_{eu} \\ \sigma_{ne} & \sigma_{n}^{2} & \sigma_{nu} \\ \sigma_{ue} & \sigma_{un} & \sigma_{u}^{2} \end{pmatrix}$$

- where *T* is a rotation matrix from ECEF to ENU coordinates.
- This rotation serves HPL and VPL computation.

Stanford diagram

HPLpos by Conventional EKF 👌

国立大学法人

Tokvo University of Marine Science and Technology

HPLpos by Adaptive EKF

VPLpos by Conventional EKF (東京海洋大学) typ University of Marine Science and Technology

VPLpos by Adaptive EKF

Summary for Integrity

- Protection Levels by the conventional EKF degraded.
 - No longer the integrity information.
- Adaptive EKF restrained the degradation.
 MI stood at the marginal.

- Introduction to Adaptive Kalman Filter
 - Kalman filter
 - IAE(Innovation-based Adaptive Estimation)
 - Applying IAE to GNSS
- Adaptive EKF vs. Urban Canyon
 - Positioning accuracy and precision
 - Measurement error and predicted sigma
 - Integrity Information

Conclusion and future works

Conclusion

- The adaptive EKF achieved the impressive GNSS performance using the mass-product receiver in the dense urban environment:
 - The positioning accuracy and precision are drastically improved comparing with the conventional EKF.
 - Adapted covariance matrix matched the actual measurement errors well,
 - It was the challenge for the conventional SNR-based estimation.
 - Integrity information degraded by the conventional EKF, while adaptive EKF restrained the degradation.

- The ideal MI (Miss-leading Information) is 0%.
 - Further investigation and improvement are necessary to establish more robust integrity information.
 - Alternate detection methods of outliers must be considered:
 - Residual-based test
 - Solution separation

- The author would like to thank the colleagues of:
 - Furuno Electric Co,. Ltd.
 - eRide, Inc.
 - building the test environment
 - collecting test drive data

Thank you very much for your kind attention!

• GNSS pseudo-range measurement can be modeled by simply:

$$\rho^{i} = \gamma^{i} + \delta t + \epsilon_{\rho^{i}}$$

$$\gamma^{i} = \| \boldsymbol{g}^{i} - \boldsymbol{g}_{u} \|$$

$$= \sqrt{(x^{i} - x_{u})^{2} + (y^{i} - y_{u})^{2} + (z^{i} - z_{u})^{2}}$$

- Then, linearize by Taylor series:

$$\begin{split} \rho^{i} &\sim \left(\sqrt{(x^{i} - x_{0})^{2} + (y^{i} - y_{0})^{2} + (z^{i} - z_{0})^{2}} + \delta t_{0} \right) \\ &+ \frac{(x^{i} - x_{0})\Delta x + (y^{i} - y_{0})\Delta y + (z^{i} - z_{0})\Delta z}{\sqrt{(x^{i} - x_{0})^{2} + (y^{i} - y_{0})^{2} + (z^{i} - z_{0})^{2}}} + \Delta \delta t + \epsilon_{\rho^{i}} \end{split}$$

Horizontal pos. error (lap04) 文 東京海洋大学

Vertical pos. error (lap04)

	Mean	Erro at	Erro at
	error[m]	68.27%[m]	95.45%[m]
Adaptive EKF	17.16	23.6	42.5
Conventional EKF	80.43	102.0	180.4

国立大学法人

Tokyo University of Marine Science and Technology

	GPS/QZSS			GLONASS		
	Mean	StDev	Max	Mean	StDev	Max
	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]
Lap01	32.9	66.9	593.4	20.2	41.6	297.5
Lap02	43.1	94.0	530.8	24.6	48.5	477.4
Lap03	33.5	77.8	491.8	50.5	87.3	516.9
Lap04	14.0	38.6	548.6	53.4	82.5	564.5
Lap05	34.8	83.6	542.8	33.9	77.2	731.3
Lap06	33.9	84.4	576.1	21.6	55.8	531.7

	GPS/QZSS			GLONASS		
	Mean	StDev	Max	Mean	StDev	Max
	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]
Lap01	0.06	1.74	-23.11	0.05	1.15	-14.97
Lap02	0.27	2.03	16.90	0.14	1.24	9.92
Lap03	0.15	1.28	23.74	0.44	2.57	24.68
Lap04	0.04	0.59	8.77	0.20	1.44	14.90
Lap05	0.04	1.19	-18.27	0.12	1.58	23.06
Lap06	0.20	1.77	20.15	0.09	1.12	16.80

	GPS/	QZSS	GLONASS		
	Pseudo- range	Doppler shift	Pseudo- range	Doppler shift	
Lap01	0.932	0.954	0.949	0.976	
Lap02	0.990	0.982	0.953	0.954	
Lap03	0.983	0.982	0.980	0.996	
Lap04	0.959	0.922	0.978	0.990	
Lap05	0.979	0.979	0.954	0.987	
Lap06	0.989	0.990	0.979	0.989	

	GPS/	QZSS	GLONASS		
	Pseudo- range	Doppler shift	Pseudo- range	Doppler shift	
Lap01	-0.517	-0.265	-0.592	-0.276	
Lap02	-0.528	-0.357	-0.503	-0.421	
Lap03	-0.455	-0.288	-0.521	-0.292	
Lap04	-0.550	-0.328	-0.406	-0.309	
Lap05	-0.405	-0.232	-0.468	-0.254	
Lap06	-0.494	-0.206	-0.549	-0.273	

Stanford diagram

