RTK-GNSSの信頼性に関する研究

白井 友子

発表概要

- 研究目的
- RTK-GNSS測位概要
- 車両による実験(3ヶ所)
- シミュレーション概要
- シミュレーション実験
- まとめ、今後の課題

RTK-GNSSとは

受信機位置をcmレベルの精度で測る精密測位技術

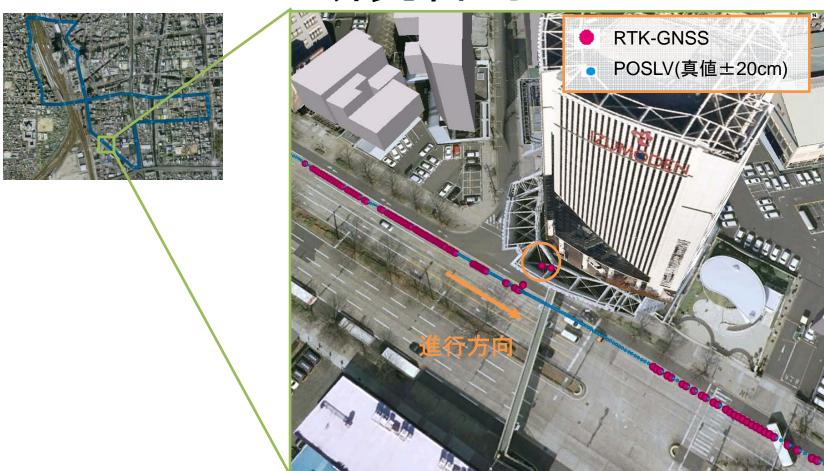
これまでのRTKの利用方法

日立流船(株) 技術研究所

測量

津波波高計

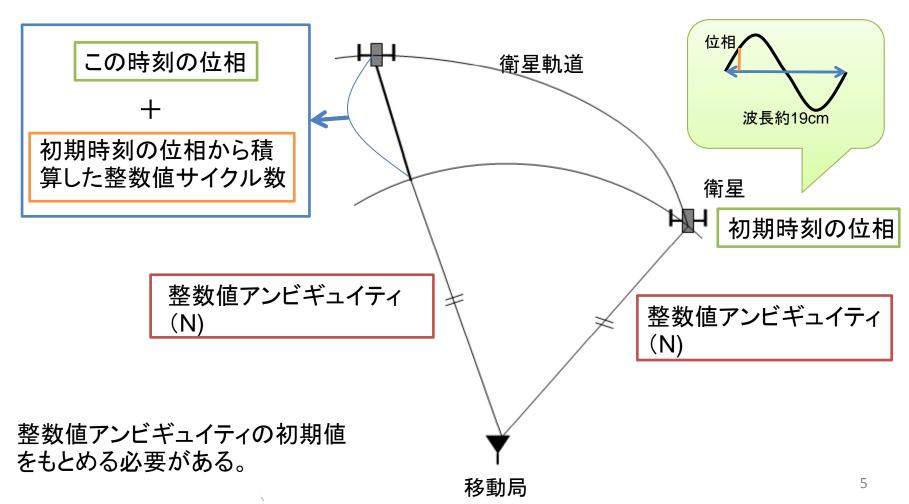
基準点


精密農業

今後期待される利用方法

ITSなど 移動体測位

研究目的



- 1. RTK-GNSSをマルチパスの影響の多い都市部で用いた場合の信頼性
- 2. RTK-GNSSに対する外乱の影響
- 信頼性の高い解が得られる条件を示す。
- 正確な解が得られることにより、RTK-GNSSが利用できない場合にINSやDopplerなどを利用しても移動体測位が精度良く行える。

DGNSSとの違い

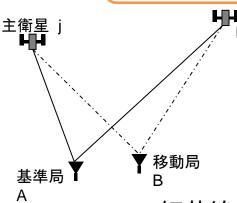
擬似距離観測値の他に搬送波位相観測値を用いる

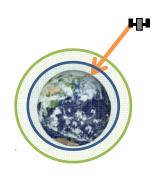
整数波数分の未知数が含まれる

二重差と観測値の測定誤差

搬送波位相観測值

$$\lambda \Phi = \rho + \lambda N - I + T + c\Delta \delta + \lambda \varepsilon$$

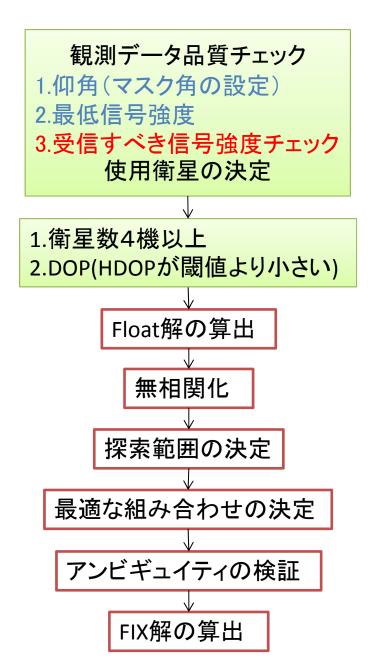

擬似距離観測値

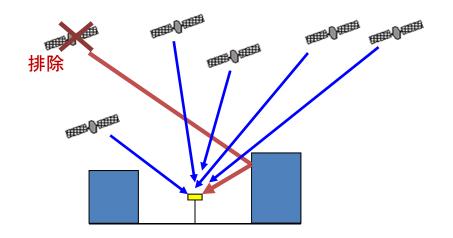

$$R = \rho + I + T + c\Delta\delta + \varepsilon$$

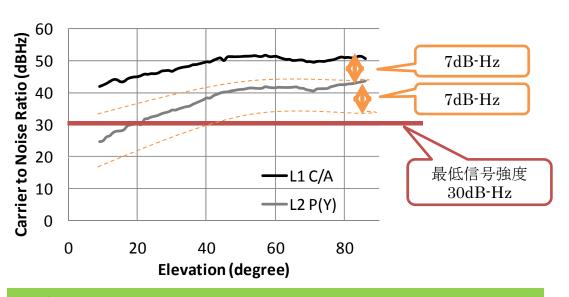
観測値

衛星一受信機間 の真の距離 電離層、対流圏による影響

衛星間、受信機間 時計誤差 マルチパスの影響衛星位置誤差など


短基線(10km程度)で二重差をとる $*_{AB}^{jk} = (*_B^k - *_A^k) - (*_B^j - *_A^j)$


$$\lambda \Phi_{AB}^{jk} = \rho_{AB}^{jk} + \lambda N_{AB}^{jk} + \lambda \varepsilon_{AB}^{jk}$$


$$R_{AB}^{jk} = \rho_{AB}^{jk} + \varepsilon_{AB}^{jk}$$

最大で波長の1/4(1~5cm程度)

測位計算

仰角とC/N₀(L1-C/A and L2P(Y) 信号)の関係

測位計算

観測データ品質チェック

- 1.仰角(マスク角の設定)
- 2.最低信号強度
- 3.受信すべき信号強度チェック 使用衛星の決定
- 1.衛星数4機以上
- 2.DOP(HDOPが閾値より小さい)

Float解の算出

無相関化

探索範囲の決定

最適な組み合わせの決定

アンビギュイティの検証

FIX解の算出

重み付き最小二乗法で以下の値を得る

- ①実数解のN
- ②Nの分散共分散行列
- ③実数解Nでの測位結果

例)未知数Nが2つの場合

$$\underline{Q_{\hat{n}}} = \begin{bmatrix} 53.4 & 38.4 \\ 38.4 & 28.0 \end{bmatrix}$$

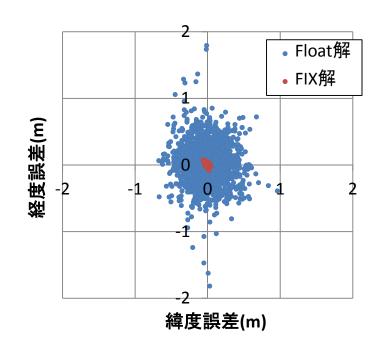
$$\underline{\hat{N}} = \begin{bmatrix} \hat{N}_1 \\ \hat{N}_2 \end{bmatrix} = \begin{bmatrix} 1.05 \\ 1.30 \end{bmatrix}$$

LAMBDA法(整数最小二乗法)

未知数である整数値を瞬時に推定する手法

Ratio テスト

推定された整数値の確かさを検証するテスト


Ratioテストを満たした整数値アンビギュイティを用いてもう1度測位を行う

電子基準点

整数値アンビギュイティの推定が重要となる。

観測日	2011/9/17 24時間分
基準局、移動局	大東2、浜岡2
基線長	約10km
	観測は30秒に1度行い、 合計2880回

利便性	信頼性	信頼性
	(50cm以内)	$(5\text{cm} \times \text{HDOP})$
1716 2880	1716 1716	1708/1716
(60%)	(100%)	(99.5%)

FIX解が得られた回数

FIX解で水平絶対誤差50cm以内

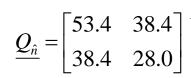
測位回数

測位計算

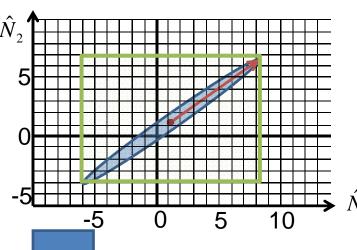
観測データ品質チェック

- 1.仰角(マスク角の設定)
- 2.最低信号強度
- 3.受信すべき信号強度チェック 使用衛星の決定
- 1.衛星数4機以上
- 2.DOP(HDOPが閾値より小さい)

Float解の算出

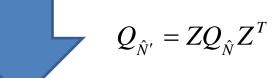

無相関化

探索範囲の決定

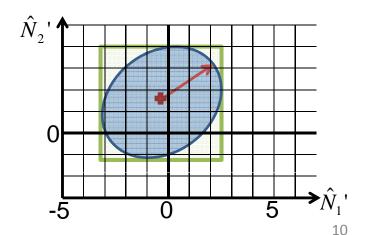

最適な組み合わせの決定

アンビギュイティの検証

FIX解の算出



$$\underline{\hat{N}} = \begin{bmatrix} \hat{N}_1 \\ \hat{N}_2 \end{bmatrix} = \begin{bmatrix} 1.05 \\ 1.30 \end{bmatrix}$$


$$\underline{N}' = Z\underline{N}$$

$$\underline{\hat{N}}' = Z\underline{\hat{N}}$$

$$Q_{\hat{n}'} = \begin{bmatrix} 4.6 & 1.2 \\ 1.2 & 28.0 \end{bmatrix}$$

$$\underline{\hat{N}'} = \begin{bmatrix} -0.25 \\ 1.8 \end{bmatrix}$$

観測データ品質チェック

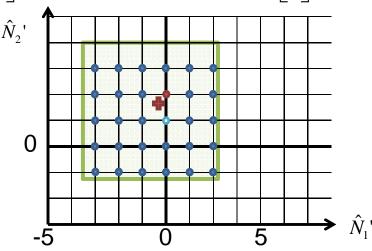
- 1.仰角(マスク角の設定)
- 2.最低信号強度
- 3.受信すべき信号強度チェック 使用衛星の決定
- 1.衛星数4機以上
- 2.DOP(HDOPが閾値より小さい)

Float解の算出

無相関化

探索範囲の決定

最適な組み合わせの決定


アンビギュイティの検証

FIX解の算出

測位計算

$$S = (\hat{N} - N)^T Q_{\hat{N}}^{-1} (\hat{N} - N) \Rightarrow 最小$$

$$\underline{N'} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \quad S = 0.028 \qquad \qquad \underline{N'} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad S = 0.081$$

$$Ratio = \frac{\circ S}{\circ S} \ge 3$$
 一正しい測位結果

$$Z^{-1}\underline{N}' = \underline{N}$$

$$\underline{\hat{N}} = \begin{bmatrix} \hat{N}_1 \\ \hat{N}_2 \end{bmatrix} = \begin{bmatrix} 1.05 \\ 1.30 \end{bmatrix} \quad \underline{N} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \quad \underline{N} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{11}$$

信頼性

• 本来の意味

推定されたアンビギュイティが正しいか

FIXと判断した解が実質的に利用可能であるか(水平誤差0.5-1m程度)

実験概要

アンテナ	NovAtel GPS 702
GPS受信機	NovAtel OEM5
基線長	10km未満

実験ルート

1 名古屋 (2010/7, 10Hz, 30分)

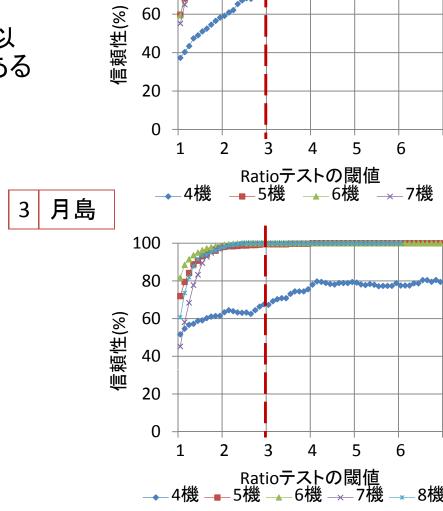
丸の内 (2010/10/25, 4Hz, 20分)

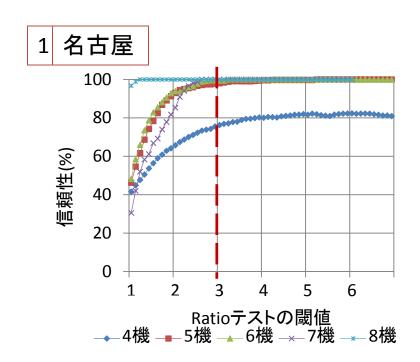
3 月島 (2010/10/25, 4Hz, 20分)

結果

信号強度	1.名 ⁻	古屋	2.丸	,の内	3.,	月島
チェック	利便性	信頼性	利便性	信頼性	利便性	信頼性
Normal	2055/16300	1828/2055	936/4523	885/936	1877/4996	1840/1877
	(12.6%)	(89.0%)	(20.7%)	(94.6%)	(37.6%)	(98.0%)
L1のみ	1998/16300	1875/1998	949/4523	909/949	2107/4996	2072/2107
	(12.3%)	(93.8%)	(21.0%)	(95.8%)	(42.2%)	(98.3%)
L1 + L2	1976/16300	1922/1976	999/4523	950/999	2402/4996	2384/2402
	(12.1%)	(97.3%)	(22.1%)	(95.1%)	(48.1%)	(99.3%)
	\			FIX解(Ratio3	3以上)	
				FIX解で水平	絶対誤差1mリ	
				測位回数	※PO	SLVと比較

信頼性とRatioテスト

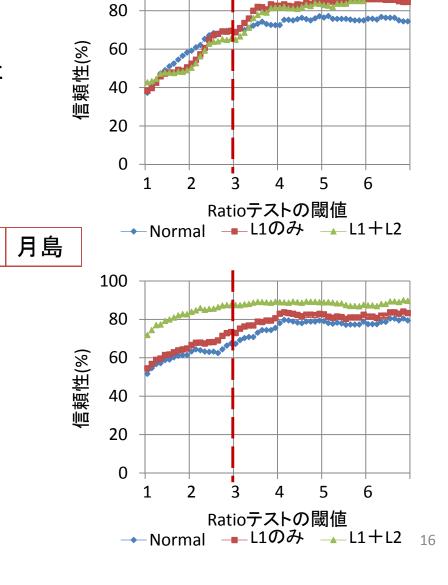

2 丸の内

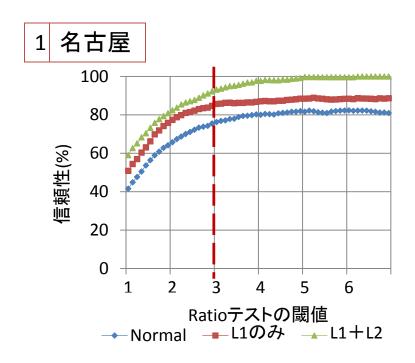

100

80

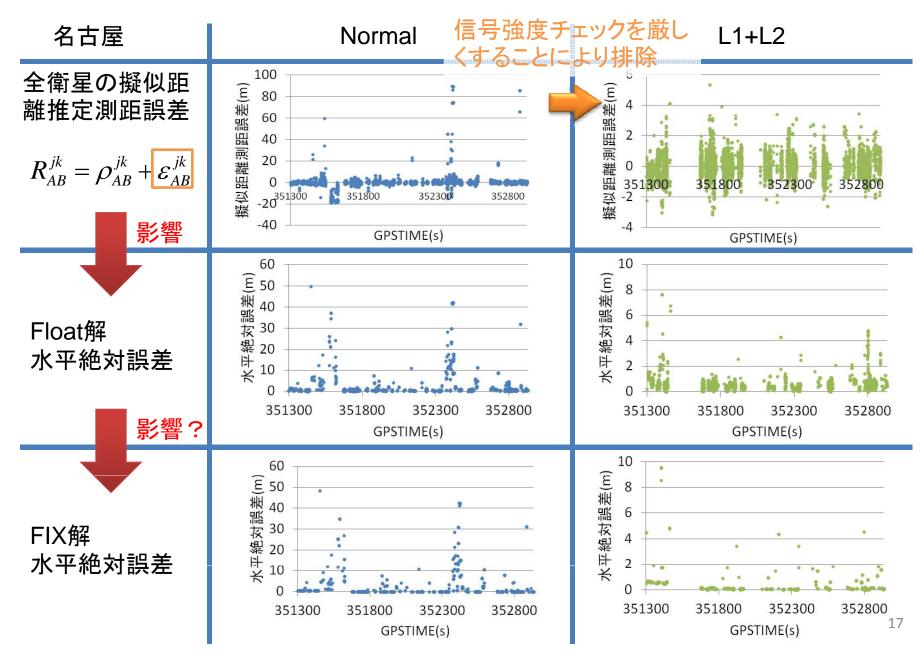
60

- Normalの場合の結果
- 衛星数が4機の場合、信頼性が大き く低下する
- 衛星数が5機以上であれば99%以 上、水平絶対誤差が1m以内である




衛星数4機の結果

2 丸の内


100

- 観測データチェックを厳しくするほど 信頼性が向上する
- 2.丸の内はHDOPが増加してしまった ため効果が得られなかった

擬似距離測距誤差と水平絶対誤差

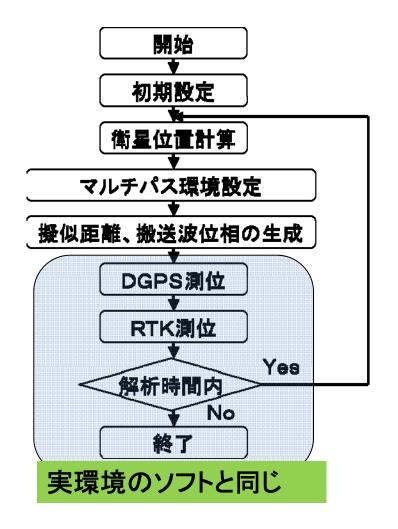
Float解とFIX解の関係

Float解 水平絶対誤差

FIX解 水平絶対誤差

	X	Υ	Z	N(衛星数-1個)
通常	重み付き最小二乗法			
ここでは	POSLV			重み付き最小二乗法

名古屋、衛星数4機の場合

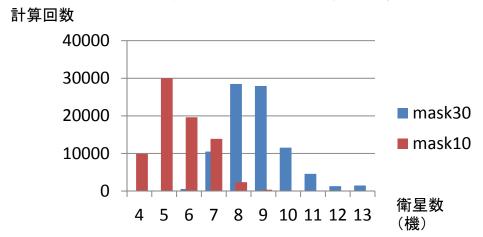

	利便性	信頼性
通常	779/3195	726/779
	(24.4%)	(93.2%)
POSLV	2472/3195	2472/2472
	(77.3%)	(100%)

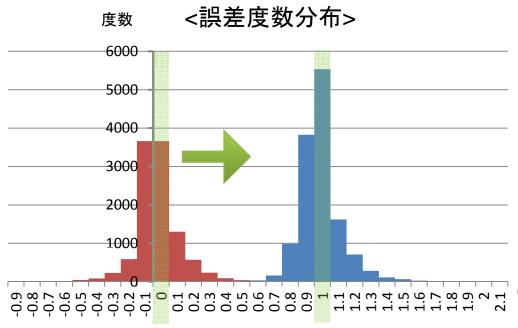
Float解に正しい値を用いることで、利便性、信頼性ともに向上した。Float解の測位結果がFIX解に影響を与えていることがわかる。

実験まとめ

- 受信すべき信号強度チェックにより
 - 信頼性が向上した
 - 利便性は増加することもあった
- 衛星数4機の場合
 - 信頼性が低下する
 - Ratioテストでは判断できない
- 衛星数5機以上の場合
 - 信頼性は99%以上であった
- FIX解はFloat解の測位精度、測距誤差の影響を受ける
- DOPや利用衛星数とのバランスもあるが、観測データの品質チェックを厳しくすることで信頼性が向上する
- ⇒どの程度の品質ならどれぐらいの信頼性があるのか

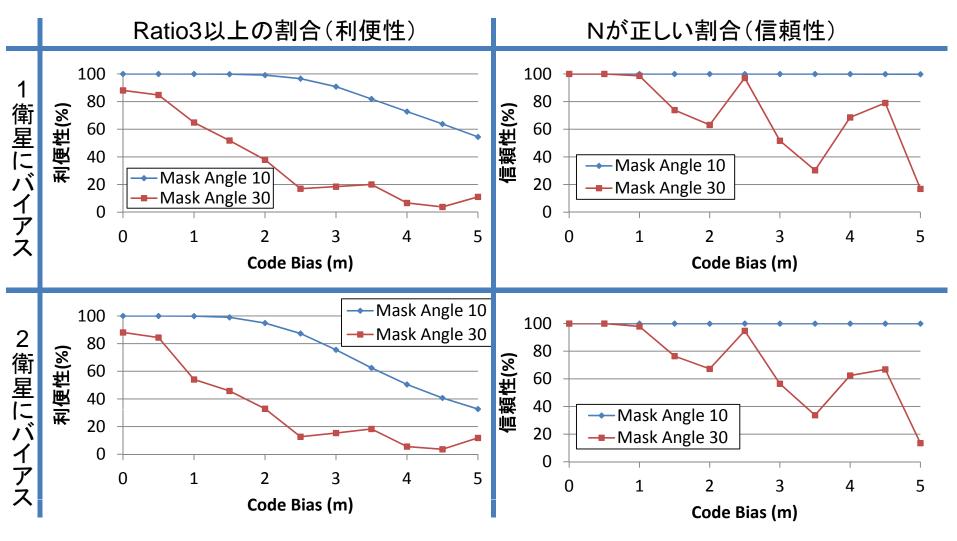
シミュレーションによるARの性能評価



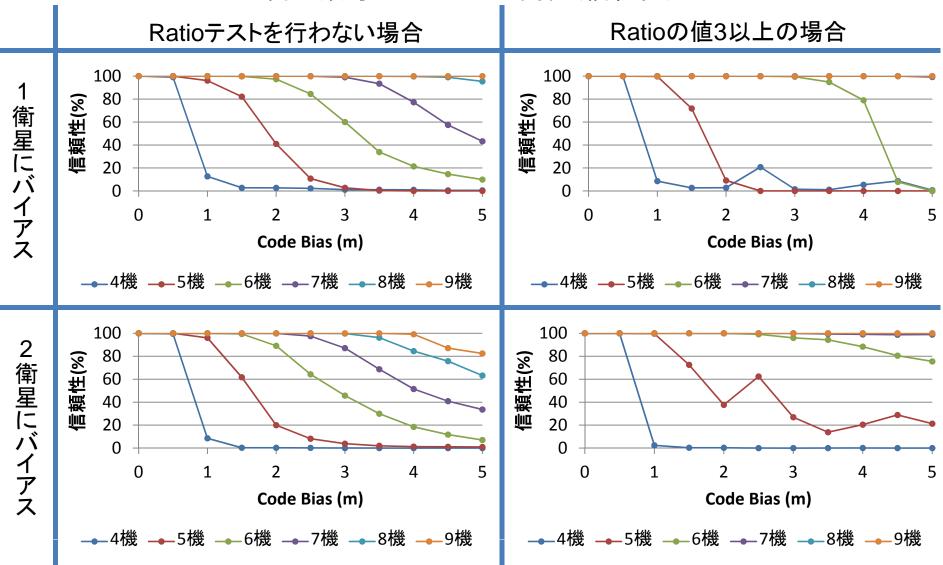

- これまで車両による実験結果を示してきたが、より一般的なシミュレーションでARの性能を評価することを試みた
- 左が処理フローで、観測データ生成以外は 全て実験の解析で利用したソフトと同一で ある
- 左のマルチパス設定において、今回は<u>シン</u> プルに擬似距離にバイアスを与えた
- 観測データの雑音は、実データに近い仰角に応じた信号強度より白色で与えた

場所	東京海洋大学
時間	24時間1Hz(86400回)
Almanacデータ	Almanac 626week (2011/08/21)
基線長	0km
HDOP	10以下

シミュレーション実験設定


<マスク角の違いによる衛星数>

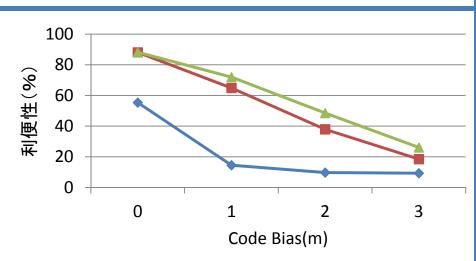
- マスク角10度と30度の場合を比較
- マスク角30度に設定することで衛星数を減少させる
- 全時間において、常に衛星1機に バイアスを加えた。
- その1つの衛星は仰角30度以上 61度未満で主衛星でないものをラ ンダムに選んだ。
- 左図:通常は平均0のホワイトノイズのみ擬似距離観測値に加えるが、1機のみ1mのバイアスを加えた例。
- また、2機に同時にバイアスを加え た場合についても検証した。

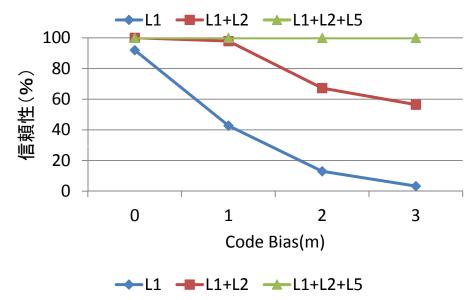

24時間トータルでの解析結果マスク10度とマスク30度の比較

バイアスが大きいほど、利便性、信頼性ともに低下する。

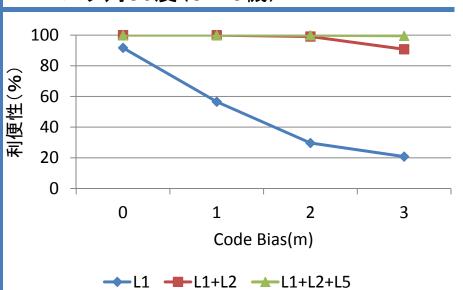
24時間トータルでの解析結果

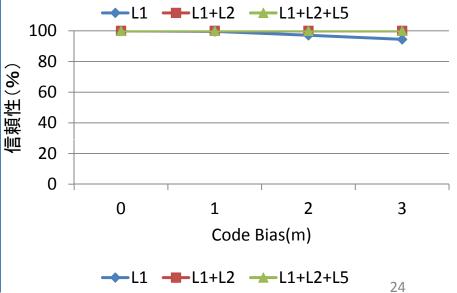
衛星数毎のNが正しい割合(信頼性)




衛星数により、信頼性が低下するバイアスの大きさが異なる。 Ratioテストを利用すると、ある程度信頼性を保つことができる。

複数周波数による測位 指星にバイアス

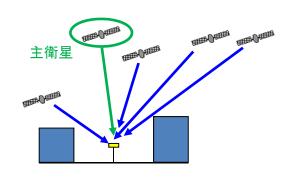

マスク角10度(4~9機)



マスク角30度(6~13機)

まとめ、今後の課題

- 観測データの品質チェックを厳しくすることで
 - 測距誤差の大きな衛星を排除することができ、信頼性が向上する
 - 利用衛星数は減少するが、利便性を増加させることもある
- シミュレーション実験より
 - 利用衛星数ごとにバイアスの許容範囲が異なる
 - 今後、複数周波数の信号を利用することで利便性、信頼性の向上が期待される。
- 今後は長基線の場合や、搬送波位相観測値に含まれる測距 誤差についてもアンビギュイティ決定に与える影響を考えてい きたい。

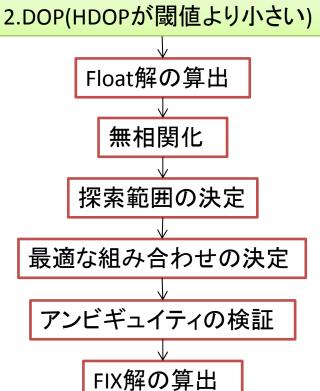

ご清聴ありがとうございました。

• 謝辞

• 本稿の移動体実験に際して、レファレンスとなる貴重な位置データを提供して頂いた豊田中央研究所殿に深く感謝します。

測位計算

4衛星で二重差の式を12得ることができ る。未知数は9。



1衛星から得られる 観測量(2周波の場合)

L1C/A	搬送波位相観測値	
	擬似距離観測値	
L2P(Y)	搬送波位相観測値	
	擬似距離観測値	

観測データ品質チェック

- 1.仰角(マスク角の設定)
- 2.最低信号強度
- 3.受信すべき信号強度チェック 使用衛星の決定
- 1. 衛星数4機以上

