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Outline
• Research background on ITS

R l t d k d li ith fl t d i l i• Related work on dealing with reflected signals in 
positioning

• Proposed scheme: cooperative relative 
positioning

• Simulation evaluation
• Initial experiment resultsInitial experiment results
• Conclusion
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Research Background
• Inter-vehicle relative position

– GPS positioning + inter-vehicle 
communications• Drive-thru data communications

Typical applications of ITS

communications
– Problem: degradation of positioning 

accuracy in urban areas

Drive thru data communications

• Car navigation
• ETC
• Support system for safe driving

②vehicle pedestrian

• Support system for safe driving

Sidewalk

Lane

②vehicle-pedestrian
distance

Support system 
f f d i i Lane

Lane

for safe driving:
Maintain three 
distances

Lane

③vehicle-road distance ①inter-vehicle distance
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Related Work
• Propagation of positioning signals in urban areap g p g g

– Reflected signal instead of line-of-sight signal due to obstruction and reflection
– Cannot be well solved by DGPS [1][5]

Existing solutions to reflected signals

correction 

(1) Antenna design
(2) Correlator refinement [6-8]
(3) Modulation design [9]

Existing solutions  to reflected signals

information
(3) Modulation design [9]
(4) Carrier smoothing [10]
(5) Signal separation

Multipath estimating delay lock loop [11]

reference
station

Spatial sampling via antenna array [12]
(6) Detection of line-of-sight path

3D GIS database [13]
Infrared camera [14]

Fig. 1

Infrared camera [14]

Existing solutions: detection and removal of reflected signals
Dilemma in absolute positioningDilemma  in absolute positioning
 Using reflected signal leads to degradation of positioning accuracy
 Removing reflected signals leads a shortage of satellites and 

increases the outage probability
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System Model
common satellites, received signals are highly correlated • Target: improving accuracy of 

relative position of vehicles in3 relative position of vehicles in 
urban area

• Effect of obstruction of buildings
Diff i f h ks1

s2
s3

s6

s4 s5

– Different views of the sky
• Separate selection of satellites

– Different trends of errors

s1

e e t t e ds o e o s
• Possible correlation of reflected 

signals
Sh t i t hi l di t

ba

– Short inter-vehicle distance
– Reflected by same building

• Using correlated signals

satellites s3, s4, s5, s6 
with multi-path error

satellites s1, s3, s4 
with multi-path error

R l ti iti b i h

Relative position by CoRelPos

g g
– Correct relative position

Fig. 2

Relative position by previous schemes
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Correlation Detection
Errors with spatial correlationPseudo range p

Measured
pseudo-range
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, ,( )s s s s s s

n n n ion n trop n np c t T d d         
true

range
receiver 

clock error
satellite

clock error
ionosphere 

delay
troposphere

delay
noise

MP error

Pseudo-range
(vehicles：n = a, b
satellites： s = k, l )

pseudo range range clock error clock error delay delay MP error

• Reference satellite l (high elevation angle): 
both vehicles receive direct signals

• Correlation detection on common satellite k
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( ) ( ) ( )) (( ) )( ( ) ( )kl
a

k k l l
a b ab

kl
ab bp        
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Correlation detection on common satellite k
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( )sr Satellite position by ephemeris infoFig. 4
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Whole Process of Positioning
③

common 
satellite 
selections2 s3 s4 s5

s1

s6
range 
②

estimation

vehicle a

①

estimated 
range

①
position prediction ④

position update
①

position prediction ④hi l b

t = m-1 t = m

range

measured 
pseudo-range

position prediction ④
position update

vehicle b
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Simulation Configuration
Si l i d b i li f i h i l d 1• Simulating pseudo-range errors by ray tracing: line-of-sight signal and 1 
reflection

• Sidewalk, roads and roadside buildings, g
– Sidewalk/lane: see Fig.5
– Building height: uniform distribution in 20-30m, building length: uniform distribution in 

0-30m

• Two vehicles: same speed=30km/h, fixed distance=20m
• Compared schemes

NoCommSat 2 ehicles e change positions from hich relati e position is– NoCommSat： 2 vehicles exchange positions, from which relative position is 
computed.

– CommSat： 2 vehicles exchange pseudo-ranges, using pseudo-range of 
common satellites to compute relative position.p p

– KF+CommSat： Based on CommSat, obtaining vehicle speed and using 
Kalman filter to combine GPS positioning and position prediction.

– CoRelPos (proposed Cooperative Relative Positioning scheme)： Based on 
KF+CommSat using correlated pseudo ranges of common satellites toKF+CommSat, using correlated pseudo-ranges of common satellites to 
compute relative position.
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Simulation Results
3m• Evaluation under two cases 3m• Evaluation under two cases

• Evaluation metric: 
Complimentary cumulative 

3m
distribution functions (CCDFs) 
of horizontal errors.
CCDF(x) = prob(error>x)
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Fig. 5
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Fig. 6 Distribution of horizontal errors (Same lane)
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Fig. 7 Distribution of horizontal errors (Different lanes)
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Experiment Evaluation
C fi i• Configuration

– Use NovAtel receivers, with raw pseudo-range outputs
– Two receivers on top of a vehicle: known ground truth of relative position

• Investigating
– The potential effect of using common satellites: decrease in #satellites, increase 

in HDOP
– Correlation of received signals: SNR, correlation detection metric

• Initial experiment results of relative positions
R (NovAtel) R2 (NovAtel)R1 (NovAtel) R2 (NovAtel)

4.85m

2.
12

m 3m

Fig. 8 Experiment setup
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Experiment Courses

• Kyoto course
Between open-sky and urban canyon

• ATR course
Approx. open sky p y yApprox. open sky
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Experiment Result 1
• Investigating the potential effect of using common satellites
• Effect 1: decrease in #satellites, CDF(x) = prob(#sat<x)

1 10
0

• Effect 2: increase in HDOP, CCDF(x) = prob(HDOP>x)

0 6

0.8

1

10
-1

10  

R
1
, P(HDOP>3) =  0.03)

R
2
, P(HDOP>3) =  0.01)

Comm, P(HDOP>3) =  0.05)

0.4

0.6

C
D

F

R
1
 (#sat = 6.4)

R
2
 (#sat = 7.1) 10

-2

C
C

D
F

0 2 4 6 8 10 12
0

0.2

N b f i ibl t llit (K t )

 

2

Comm (#sat = 6.3)

0 2 4 6 8 10
10

-3

( )

 

Number of visible satellites (Kyoto)

Fig. 9 Distribution of #visible satellites (Kyoto).
HDOP (Kyoto)

Fig. 10 CCDF of HDOP
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Experiment Result 2
• Investigating the correlation in signals received from common 

satellites
• 1: Correlation in SNR, CDF(x) = prob(|SNR diff| > x)
• 2: Correlation in the pseudo-range
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Experiment Result 3
• Actual results of relative positioning• Actual results of relative positioning

– Currently Kalman filter is not used due to lack of speed info (speed pulse).
– Correlation detection is not used.

W l h th ff t f i t llit

0GPS Relative Positioning ErrorGPS Relative Positioning Error

– We only show the effect of using common satellites

• The proposed scheme can effectively reduce positioning errors.
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Fig. 13 Distribution of error in relative position (Kyoto)

Fig. 14 CCDF of error 
in relative position (Kyoto)



Tang et al. Slide 15

Conclusion
• We argue that relative position is important in support 

system for safe drivingsystem for safe driving.
• With a short inter-vehicle distance

– Positioning signals received from common satellites tend to bePositioning signals received from common satellites tend to be 
correlated.

– Exploiting all correlated signals, including reflected ones, helps 
t i f l ti itito improve accuracy of relative position.

• Simulation and initial experiments confirmed the 
effectiveness of the proposed schemeeffectiveness of the proposed scheme.

• We have a plan to experiment in Osaka with real urban 
canyonscanyons.


