Satellite Selection Technique of RTK-GNSS in the Challenging Environments

H. Tokura and N. Kubo *TUMSAT, Japan*

- Background and Objective
- Conventional Method
 - Based on C/N₀ Measurements quality check
- Proposed Methods
 - Based on Ratio value in the RAMBDA method
 - Based on Doppler measurements
- Conclusions

Background

Background

*Conditions : HDOP < 10, Elevation mask < 15

Fix Rate	Reliability (<0.1m)	
8076 / 86400 <mark>9.3 %</mark>	7582 / 8076 93.9%	$Reliability = \frac{Number \ of \ solutions \ within \ 10cm}{Number \ of \ Fix \ solutions}$

Over 87% solutions are not able to obtain Fix Solution

Fix Rate (Ambiguity Resolution and Ratio test)

Satellites selection methods for detecting multipath signal

- Conventional Method
 - Based on C/N₀ Measurements quality check
- Proposed Methods
 - Based on Ratio value in the RAMBDA method
 - Based on Doppler information (for increasing availability)

Conventional Methods <u>Based on C/N_o Measurements quality check</u>

Checking C/N₀ Quality for detecting multipath signal

Proposed method <u>Based on Ratio value</u>

Searching best satellites combination based on Ratio Value

Proposed method <u>Based on Ratio value</u>

• Takes time to calculate

- Maximum number of satellites = 18 ₁₈C₅=8568
- Combination with conventional method

Proposed method <u>Based on Ratio value</u>

High relationship between Reliability and Ratio value

Proposed method <u>Examples of RTK affected by the diffracted signal</u>

Exclude Dominant Multipath satellite cause improving Ratio value

Proposed method <u>Based on Doppler measurements</u>

- To compare the Pseudo-range, Doppler measurements less contaminated by multipath
- Position integrated by Doppler measurements

Proposed Float solution= calculate by previous Fix solution and Doppler measurements

Doppler measurements were used for increasing availability

Testing and results <u>3 static trials condition</u>

- Multi-GNSS antenna and Receiver
 - ✓ Surveying grade receiver
 - Double frequency

Ratio test :3

- ✓ GPS/QZSS/BaiDou/GLONASS
- Reference position was calculated by Post process RTK-GNSS
 Dual-Frequency RTK
 AR : LAMBDA methods

 $Reliability = \frac{Number of solutions within 10cm}{Number of FIX solutions}$

Satellite Selection Based on Fisheye view

• To complete proposed methods, Fisheye view were used for exclude satellites

Azimuth-Elevation Mask

Summery of results

	Point1		Point2		Point3	
	Fix	Reliability (<0.1m)	Fix	Reliability (<0.1m)	Fix	Reliability (<0.1m)
GPS/QZSS/GLON ASS/BeiDou	8076 / 86400 9.3 %	7582 / 8076 93.9%	11680 / 86400 13.5 %	11322 / 11680 96.9 %	26778 / 36000 74.4 %	26734 / 26778 99.8%
C/N ₀ Quality check	19508 / 86400 22.6 %	19125 / 19508 98.0 %	10890 / 86400 12.6 %	10593 / 10890 97.3 %	34949 / 36000 97.1 %	34949 / 34949 100.0 %
Ratio						
Cn8+Doppler	26990 / 86400 31.2 %	26309 / 26990 97.5 %	18311 / 86400 21.2 %	17080 / 18311 93.3z %		
Fisheye	13620 / 86400 15.8 %	13207 / 13620 97.0 %			35454 / 36000 98.5 %	35452 / 35454 100.0 %

Conclusion

Thank you for kind attention!

Summery of results

	Point1		Point2		Point3	
	Fix	Reliability (<0.1m)	Fix	Reliability (<0.1m)	Fix	Reliability (<0.1m)
GPS/QZSS/GLON ASS/BeiDou	8076 / 86400 9.3 %	7582 / 8076 93.9%	11680 / 86400 13.5 %	11322 / 11680 96.9 %	26778 / 36000 74.4 %	26734 / 26778 99.8%
cn8	19508 / 86400 22.6 %	19125 / 19508 98.0 %	10890 / 86400 12.6 %	10593 / 10890 97.3 %	34949 / 36000 97.1 %	34949 / 34949 100.0 %
Ratio						
Cn8+Doppler	26990 / 86400 31.2 %	26309 / 26990 97.5 %	18311 / 86400 21.2 %	17080 / 18311 93.3z %		
Fisheye	13620 / 86400 15.8 %	13207 / 13620 97.0 %			35454 / 36000 98.5 %	35452 / 35454 100.0 %
Fisheye + Doppler	19895 / 86400 23.0 %	19109 / 19895 96.0 %			35652 / 36000 99.0 %	35650 /35652 100.0 %

Satellite Selection Based on Fisheye view

 To comprete proposed methods, Fisheye view were used for Exclude satellites.

Azimuth correction

Azimuth-Elevation Mask

Proposed method <u>Based on Doppler measurements</u>

- To compare the Pseudo-range, Doppler measurements less contaminated by multipath
- Position integrated by Doppler measurements

 Once fix solution are obtained, use Fix solution and position integrated by Doppler measurements to Float solution for next epoch

Proposed Float solution= calculate by previous Fix solution and Doppler measurements

RTK-GNSS by Multi constellation

