

Laboratory of Satellite Navigation Engineering

Reliability Estimation for RTK-GNSS/IMU/Vehicle Speed Sensors in Urban Environment

Ren Kikuchi, Nobuaki Kubo (TUMSAT) Shigeki Kawai, Ichiro Kato, Nobuyuki Taguchi (DENSO corporation)

> IS-GNSS 2015 Kyoto 17.11.2015

Contents

➢ Background and Objective

➢Integration of the RTK-GNSS, IMU, and Vehicle Speed Sensors

➤Test and Results

Summary

Background

- Recently, advanced driver assistance systems with features such as lane change assist and automatic braking in automotive applications have experienced a rapid growth.
- For a more advanced operating system implementation, improvement of the vehicle location accuracy is desired.
 Positioning by GNSS is becoming a widely used method for this purpose where accurate positioning at a few cmlevel can be obtained by using Real-Time Kinematic (RTK) technique.

Background

- the use of RTK-GNSS
 - -For precise survey
 - –For mapping
- What's the performance of the RTK-GNSS in urban environments ?
- The possibility of accuracy improvement technique using integrating GNSS and vehicle sensors.
- Protection Level estimation

Algorithm of Integration

Position from RTK-GNSS

- Double-differenced observations in each satellite system
- Signal quality check and ADOP
- Doppler aided LAMBDA method the ambiguities are resolved in a single epoch
- Ratio Test \geq 3

Fix solution

Velocity from GNSS

- Relative velocity → Doppler shift (Doppler frequency)
- Ephemeris information → satellite velocity
- Velocity of the vehicle can be calculated as follows

$$\Delta f = \frac{f\rho'}{c}$$
$$(V_i - V)S_i + \Delta \rho = \rho_i$$

- *f* :the frequency of the carrier from GPS
- Δf : the frequency shift from the Doppler measurement
- c :the speed of light
- ρ : the relative speed between the satellite and the vehicle
- V_i : the velocity of the satellite
- *V* : the velocity of the vehicle
- S_i:the eye vector of the satellite
- $\Delta \rho$: the error of the oscillator

Heading from GNSS velocity

We can not get the right heading when the vehicle is stationary or in a low speed

- GNSS velocity measurement has a few cm/s noise
- The heading error will increase when the vehicle is moving in a high yaw rate
 - GNSS sampling is in a low rate

The data not satisfies the speed threshold or the DOP threshold will not be used

Heading Estimation Algorithm

- Moving situations HDOP threshold : 2.5
 - Low speed (below 0.5 m/s) (from vehicle speed sensors)
 - Normal speed (over 0.5 m/s) with low yaw rate (below 4°/s)
 - Normal speed with high yaw rate (over 4°/s)
- The measurement covariance will be updated in each state.

 $\psi_{G_k}: \text{GNSS heading} \qquad \omega_{g_k}: \text{Angular velocity (IMU)}$ $x_k = (\psi_{G_k}, \omega_{g_k})$ ors) $x_{k+1} = F_k x_k + G w_k$ $y_k = H x_k + v_k$ $F = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}$

 $\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_{k} (y_{k} - H_{k} \hat{x}_{k|k-1})$ $\hat{x}_{k+1|k} = F_{k} \hat{x}_{k|k}$ $K_{k} = P_{k|k-1} H_{k}^{T} (H_{k} P_{k|k-1} H_{k}^{T} + R_{k})^{-1}$ $P_{k|k} = P_{k|k-1} - K_{k} H_{k} P_{k|k-1}$ $P_{k+1|k} = F_{k} P_{k|k} F_{k}^{T} + G_{k} Q_{k} G_{k}^{T}$ $R = \begin{bmatrix} \sigma_{\Psi_{G}}^{2} & 0 \\ 0 & \sigma_{\Psi_{G}}^{2} \end{bmatrix}$

DR(Estimated heading + Speed Sensors)

$$E_{t} = E_{t-1} + \frac{(\cos(\theta_{t-1}) \ V_{t-1} + \cos(\theta_{t}) \ V_{t})}{2} \Delta t$$
$$N_{t} = N_{t-1} + \frac{(\sin(\theta_{t-1}) \ V_{t-1} + \sin(\theta_{t}) \ V_{t})}{2} \Delta t$$

Experiment

GNSS Antenna	NovAtel 703 GGG
GNSS Receiver	Trimble SPS 855
Baseline Length	- 10km
IMU	Analog Devices ADIS16445
Speed Sensor	Standard Vehicle Loaded Wheel Speed Sensors
Reference	POS/LV (Applanix) positional accuracy within 30 cm
Location	Nagoya City, Japan (dense urban areas)

Experiment Course

Total 3 tests Period : about 30min Data rate : 10Hz

Test	NUS (ave.)
1	9.2
2	9.7
3	9.3

Number of used satellites.

RTK-GNSS Performance

Overall Results

Protection Level Estimation

- Positioning by GNSS relays on weak signals that have well-known vulnerabilities and when being integrated with other systems, integrity and performance-based monitoring becomes an important task for protection from faults in order to produce robust precise position estimation. It is also important to alert the user in case that the system can not reach the target performance.
- > RTK is not difficult to estimate the accuracy except for the wrong fixes.
- GNSS based velocity, instantaneous accuracy of velocity is not difficult to estimate. but we need to consider the degradation if we use this velocity continuously because there is a bias term.
- In the same manner, it is possible to estimate the positioning accuracy according to the empirical performance of the sensors for Dead Reckoning solutions by using IMU and speed sensor.

Protection Level Estimation

> The covariance ellipse by satellite constellation

$$\frac{x^2}{\sigma_x^2} - 2\rho_{xy}\frac{xy}{\sigma_x\sigma_y} - \frac{y^2}{\sigma_y^2} = (1 - \rho_{xy}^2)C$$
$$P = 1 - \exp\left(-\frac{C}{2}\right)$$

Considered accumulating bias errors in GNSSvelocity and DR solutions.

Parameter	Value
RTK-GNSS error (m)	0.025
GNSS-velocity error (m/s)	0.02
IMU+Speed sensor error (m/s)	0.03

Protection Level Estimation

Coordinate transformation of the ellipse and true positions, plotting in time series stretched to fit the positioning error to the major axis of the ellipse figure.

Coordinate transformation of the ellipse and true positions, plotting the positioning distribution within 1m unit circle.

Summary

Loosely coupled integration (RTK-GNSS/IMU/Speed sensors) method was proposed. RTK-GNSS has been improved by using <u>multi-GNSS constellation</u>.

- Good accuracy was maintained using a simple integration method. Loosely coupled KF was used to estimate important heading information.
- Availability was improved to <u>100 %</u>. Percentage within 1.5 m horizontal was <u>91 – 95 %</u>. Maximum horizontal errors were reduced to <u>2 – 3 m</u>.
- Protection level estimated by simple way. The resulted probability as it is set.

Future Work

> Integrity monitoring

Apply Advanced RAIM methods in GNSS Real-Time Kinematic (RTK) positioning and when GNSS is integrated with other sensors for vehicle positioning. Mainly restrict our focus to horizontal positioning.

$$y = Gx + \varepsilon \qquad S = (G^{T}WG)^{-1}G^{T}W \qquad W = Q_{y}^{-1} \qquad Q_{E,N} = SW^{-1}S^{T}$$

$$G_{r,v}^{k,l} = \begin{bmatrix} (-\cos\epsilon^{k}\sin\theta^{k} + \cos\epsilon^{l}\sin\theta^{l})_{r} - (-\cos\epsilon^{k}\sin\theta^{k} + \cos\epsilon^{l}\sin\theta^{l})_{v} \\ (-\cos\epsilon^{k}\cos\theta^{k} + \cos\epsilon^{l}\cos\theta^{l})_{r} - (-\cos\epsilon^{k}\cos\theta^{k} + \cos\epsilon^{l}\cos\theta^{l})_{v} \end{bmatrix}^{T} \qquad HPL_{RTK} = K_{fa(H),i} \times \sigma_{dH,i} + K_{md,i} \times \sigma_{H,i}$$

$$HPL_{DR} = K_{fa(H)} \times \sigma_{dH} + H(|S|)bias_{\theta IMU}$$

$$HPL_{vel} = K_{fa(H)} \times \sigma_{dH}$$

$$HPL_{vel} = K_{fa(H)} \times \sigma_{dH}$$

$$HPL_{vel} = K_{fa(H)} \times \sigma_{dH}$$

Thank you for your attention !