Performance Evaluation of GNSS Based Railway Positioning

IS-GNSS 2015, Kyoto, Japan

<u>Motoki Higuchi</u>, Nobuaki Kubo and Tomoji Takasu (Tokyo University of Marine Science and Technology)

> Haruo Yamamoto (Railway Technical Research Institute)

Outline

- Background and Motivation
- Data Acquisition
- Multipath Error Analysis
- Multipath Error Mitigation and Results
- Conclusion

Motivation 1

- What are the reasons of these errors ? (Multipath ?)
- How big of these errors ?
- The large errors are likely to occur at same places like shown in these pictures.
- We need to know the actual performance using long time data.
- If possible, we want to reduce these errors.

Motivation 2

- East Japan Railway Company plans to install the GNSS based warning device (lines in red) for train approach to protect the worker in the field.
- Red(warning): 1500m Yellow(caution): 3000m
- Safety related applications requires <u>integrity and</u> <u>reliability</u>.
- For this purpose, <u>performance analysis in the</u> <u>real railway environment</u> is quite important.

Objective

- Analyzing the pseudo-range errors of every satellite using big data obtained in real railway environments.
- Horizontal DGNSS errors are also analyzed.
- Error mitigation technique are also introduced.

Data Acquisition 1

Test Train for Conventional Line (U@tech)

Interval	0.1 s
Receiver 1	JAVAD Delta-G3T
Receiver 2	NovAtel OEM628
Antenna	NovAtel GPS-703-GGG
Antenna interval	18.21 m
Rubidium oscillator	Stanford Research Systems FS725
Reference station	Receiver : JAVAD Delta-G3T
	Antenna : JAVAD GrANT-G3

Data Acquisition 2

The observational data was collected in sections totaling 171 km on four operating lines extended in four directions from JR Kyoto Station.

Urban areas including spots like the valley of the buildings, plain areas of the suburbs, mountainous areas, etc. The tunnel also exists in part.

The observation was carried out from December, 2012 to February, 2013 (a total of 7 days) and the mileage amounted to a total of 2,000 km.

The important reference positions used in this test were produced using both the antenna trajectory (GIS) and post-processed RTK.

Railway lines for test (West Japan Railway Area)

Pseudo-range Errors Analysis

Validation of the Proposed Method

- Test using car in the medium urban areas (Tokyo)
- 6 min 30 sec (5 Hz)
- Geodetic receiver and antenna
- Target satellite was GPS
- Reference SV: PRN-19 (66 degree)
- 9 satellites in view over 10 degree elevation
- Precise car positions were computed by postprocessing RTK.

Test route

Temporal Pseudo-range Errors of Each Satellite using the Proposed Method

SV16 has over 50 m pseudo-range errors clearly due to Non-Line-Of-Sight signal

Comparison between DGPS errors and Pseudo-range errors

Error Analysis obtained in Real Railroad Environment

Analysis condition

Satellite	GPS and QZSS	
Minimum C/N0	25 dB-Hz	
Mask angle	10 degree	
Reference satellite	Maximum elevation and C/N ₀ > 43.0 dB-Hz	
GDOP	< 30	
Interval	1.0 sec	
Smoothing	Not applied (default 2 sec in JAVAD receiver)	

Pseudo-range errors were analyzed using the previous method. The data while the train stopped at the station was not included. DGNSS (GPS/QZS) was also evaluated.

Statistical Results of all Pseudo-range Errors

One Shot of Large Errors nearby Kyoto Station

According to the investigation of all test results. The pseudo-range errors over 10 m occurred at the following places.

- 1) Nearby station
- 2) Under or nearby overpass
- 3) Close to hill or mountain
- 4) Both ends at tunnel

Proposed Pseudo-range Error Mitigation

Evaluation of the Multipath Mitigation Technique

- We compared the <u>pseudo-range errors</u> between the use of <u>all</u> <u>available satellites</u> and the use of <u>selected satellites</u> using the proposed three techniques.
- Data : "Kyoto" and "Biwako" line (3.5 hours, 12/11/2012)
- Based on our many experimental data, the thresholds were set. The following table summarizes statistical results comparing the two cases.

	All satellites used	Selected satellites used
Number of samples	97407	73779
1σ	1.32 m	0.99 m
Average	–0.17 m	–0.16 m
Maximum	38.7 m	25.3 m
Number of samples		
with error over 5 m	730	108

Cumulative Frequency of pseudo-range Errors

Percentage Point	All satellites used	Selected satellites used
99.00%	5.3 m	3.0 m
99.90%	11.1 m	5.5 m

Cumulative Frequency of Horizontal Errors

Percentage Point	All satellites used	Selected satellites used
99.00%	4.6 m	3.1 m
99.90%	16.0 m	6.5 m
Positioning rate	90.3 %	88.0 %

Loosely Coupled KF using Velocity Information

- Doppler frequency derived "velocity" is quite tolerant to strong multipath condition.
- Pseudo-range based "position" is not tolerant to strong multipath condition.
- We need to put them together efficiently.
- Data : "Kyoto" and "Biwako" line (3.5 hours, **<u>10Hz</u>**, 12/11/2012)

 $x_{k+1} = Fx_k + Gw_k$ $\mathbf{x}_{k} = [x(k), y(k), v_{x}(k), v_{y}(k), a_{x}(k), a_{y}(k)]^{\mathrm{T}}$ $x(k+1) = x(k) + v_{x}(k)\Delta T + a_{x}(k)\Delta T^{2}/2.0$ $y(k+1) = y(k) + v_y(k)\Delta T + a_y(k)\Delta T^2 / 2.0$ $1 \quad 0 \quad \Delta T \quad 0 \quad \Delta T^2/2$ 0 0 $\Delta T^2/2$ 0 ΔT 0 0 $y_{k} = [x(k), y(k), v_{x}(k), v_{y}(k)]^{T}$ $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ $1 \ 0 \ 0 \ 0 \ 0$ 0 0 1 0 0 0 0 0 0 1 0 0 *F* : *state transition matrix G*: noise distribution matrix

Velocity information indeed enables us to provide smooth and small jump results

Cumulative Frequency of Horizontal Errors

Conclusions

- Performance evaluation of GNSS based railway navigation was conducted using the quite valuable raw data obtained in the real railway environments.
- The results were as we expected. The most of errors were like beautiful normal distribution except for the large jumps over 10 m.
- Large jumps occurs frequently at Nearby station, Nearby overpass, Close to hill or mountain and Both ends at tunnel.
- Good quality satellite selection method was proposed. Approximately, 65 % of large errors were reduced.
- Loosely coupled with velocity information was also evaluated. At the 99.99 % percentile results, the error was reduced dramatically from 60.8 m to 6.6m.
- Fundamental results for integrity monitoring was prepared.

Acknowledgment

• The authors express their sincere gratitude to everyone concerned at the Japan Aerospace Exploration Agency, which offered equipment, and at the West Japan Railway Company, JR West Japan Consultants Company, Geospatial Information Authority of Japan, and JENOBA Co., Ltd., which cooperated in the data acquisition.

appendix

DGPS mitigates ...

Source	Potential error size	Error mitigation using DGPS
Satellite clock model	<mark>2 m</mark> (rms)	0.0 m
Satellite ephemeris prediction	2 m (rms) along the LOS	<mark>0.1 m</mark> (rms)
Ionospheric delay	<mark>2-10 m</mark> (zenith) Obliquity factor <mark>3 at 5</mark> °	<mark>0.2 m</mark> (rms)
Tropospheric delay	2.3-2.5m (zenith) Obliquity factor 10 at 5°	0.2 m (rms) + altitude effect
Multipath (open sky)	Code : <mark>0.5-1 m</mark> Carrier : 0.5-1 cm	\rightarrow
Receiver Noise	Code : <mark>0.25-0.5 m</mark> (rms) Carrier : 1-2 mm (rms)	\rightarrow

Limitations of DGPS

Accuracy

Relationship between DGNSS and Pseudo-range Errors

 In the case of DGNSS within 100 km baseline, the dominant part of errors will be "multipath and DOP" (GDOP<30). <u>Satellite position,</u> <u>clock and atmospheric errors are negligible in terms of desi-meter</u> <u>accuracy.</u>

Error distribution

25000

Horizontal DGNSS Errors = -5m 0m 5m × HDOP

Cumulative Frequency of Horizontal Errors(Interval:10Hz)

Percentage Point	All satellites used	Selected satellites used
99.00%	4.8 m	3.0 m
99.90%	39.8 m	6.5 m