Performance Evaluation of GNSS Based Railway Applications

IAIN World Congress 2015, Prague, Czech Republic

<u>Nobuaki Kubo</u>, Motoki Higuchi and Tomoji Takasu (Tokyo University of Marine Science and Technology)

Haruo Yamamoto

(Railway Technical Research Institute)

Outline

- Motivation
- Data Acquisition
- Multipath Error Analysis
- Multipath Error Mitigation and Results
- Conclusion

ここに最近のトピックを入れる

Motivation 1

- What are the reasons of these errors ? (Multipath ?)
- How big of these errors ?
- The large errors usually occurs at same places like shown in these pictures.
- We need to know the actual performance using GNSS.
- If possible, we want to reduce these errors.

Motivation 2

- East Japan Railway Company plans to install the GNSS based warning device (routes in red) for train approach to protect the worker in the field.
- Red(warning): 1500m Yellow(caution): 3000m
- Safety related applications requires <u>integrity and</u> <u>reliability</u>.
- For this purpose, <u>performance analysis in the</u> <u>real railway environment</u> is quite important.

Data Acquisition 1

Test Train for Conventional Line (U@tech)

Interval	0.1 s		
Receiver 1	JAVAD Delta-G3T		
Receiver 2	NovAtel OEM628		
Antenna	NovAtel GPS-703-GGG		
Antenna interval	18.21 m		
Rubidium oscillator	Stanford Research Systems FS725		
Reference station	Receiver : JAVAD Delta-G3T		
	Antenna : JAVAD GrANT-G3		

Data Acquisition 2

The observational data was collected in sections totaling 171 km on four operating lines extended in four directions from JR Kyoto Station. Urban areas including spots like the valley of the buildings, plain areas of the suburbs where the sky is open and mountainous areas, etc. are given as the positioning environment. The tunnel also exists in part. The observation was carried out from

December, 2012 to February, 2013, and the mileage amounted to a total of 2,000 km.

The kinematic reference positions used in this test were produced using both the antenna trajectory (GIS) and post-processed RTK positioning, and they were used to evaluate positioning performance in this paper.

Railway lines for test (West Japan Railway Area)

Google map

Multipath Error and Noise Analysis

Validation of the Proposed Method

- Test using car in the medium urban areas (Tokyo)
- 6 min 30 sec (5 Hz)
- Geodetic dual frequency receiver and antenna
- Reference station was our building
- Reference SV: PRN-19 (66 degree)
- 9 satellites in view over 10 degree elevation
- Precise car positions were computed by postprocessing RTK.

Test route

Temporal Multipath Errors and Noise of Each Satellite using the Proposed Method

Pseudo-range DGPS Error Analysis

Error Analysis under Real Railroad Environment

Analysis condition

Satellite	GPS and QZSS	
Minimum C/N0	25 dB-Hz	
Mask angle	10 degree	
Reference satellite	Maximum elevation and C/N ₀ > 43.0 dB-Hz	
GDOP	< 30	
Interval	1.0 sec	
Smoothing	Not applied (default 2 sec in JAVAD receiver)	

Pseudo-range errors were analyzed using the previous method. The data while the train stopped at the station was not included. DGNSS (GPS/QZS) was also evaluated.

Test Results of Each Line

マルチパス誤差とDGPSの誤差の関係

One Shot of Large Errors nearby Kyoto Station

Heavily deteriorated satellite (Ele=41, Azi=162)				
Places (from left)	1	2	3	4
Pseudo-range Error[m]	7.6	18.9	15.3	-7.9
Actual Error [m]	8.3	19.4	14.0	11.5

Nearby Kyoto Station Direction 10m Google map

DGNSS errors strongly depends on the pseudo-range errors.

The pseudo-range errors over 10 m occurred at the following places.

- 1) Nearby station
- 2) Under or nearby overpass
- 3) Close to hill or mountain
- 4) Both ends at tunnel

Proposed Pseudo-range Error Mitigation

3. Use of the antenna installation intervals

Evaluation of the Multipath Mitigation Technique

- We compared the <u>pseudo-range errors</u> between the use of <u>all</u> <u>available satellites</u> and the use of <u>selected satellites</u> using the proposed three techniques.
- Data : "Kyoto" and "Biwako" line (3.5 hours, 12/11/2012)
- Based on our many experimental data, the thresholds were set. The following table summarizes statistical results comparing the two cases.

	All satellites used	Selected satellites used
Number of samples	97407	85421
1σ	1.32 m	1.11 m
Average	–0.17 m	–0.15 m
Maximum	38.7 m	21.6 m
Number of samples	720	250
with error over 5 m	/30	250

Cumulative Frequency of Horizontal Errors

Percentage Point	All satellites used	Selected satellites used
99.00%	4.6 m	3.5 m
99.90%	10.0 m	6.9 m

Loosely Coupled KF using Velocity Information

- Doppler frequency derived "<u>velocity</u>" is quite tolerant to strong multipath condition.
- Pseudo-range based <u>"position"</u> is not tolerant to strong multipath condition.
- We need to put them together efficiently.
- Data : "Kyoto" and "Biwako" line (3.5 hours, <u>10Hz</u>, 12/11/2012)

実際の擬似距離とドップラ速度積分の例を見せる

 $x_{k+1} = Fx_k + Gw_k$ $y_k = Hx_k + v_k$ $[\mathbf{x}_{k} = [x(k), y(k), v_{x}(k), v_{y}(k), a_{x}(k), a_{y}(k)]^{\mathrm{T}}$ $x(k+1) = x(k) + v_{x}(k)\Delta T + a_{x}(k)\Delta T^{2}/2.0$ $y(k+1) = y(k) + v_{y}(k)\Delta T + a_{y}(k)\Delta T^{2}/2.0$ $v_x(k+1) = v_x(k) + a_x(k)\Delta T$ $v_{y}(k+1) = v_{y}(k) + a_{y}(k)\Delta T$ $\Delta T = 0 = \Delta T^2/2$ 0 $\Delta T^2/2$ ΔT 0 ΔT 0 0 $y_{k} = [x(k), y(k), v_{x}(k), v_{y}(k)]^{T}$ $0 \ 0 \ 0$ 1 0 0 0 x_{k} : state vector *F* : *state transition matrix* W_{ι} : system noise G: noise distribution matrix y_{μ} : measurement vector H: observation matrix v_{\perp} : measurement noise

Cumulative Frequency of Horizontal Errors

Conclusions

22

(What if there is bias in "cc-difference"?)

- In fact, there is a bias in multipath error derived from "cc-difference".
- However, the long-term bias in the case of reference station (or high elevation satellite) is quite small like the following figure because of very short delay.

(velocity check in <u>geodetic</u> receiver)

	Lateral	Heading	Availability
C/N ₀ detection (7.0 dB)	10.8 cm	16.9 cm	67%
C/N ₀ detection (10.0 dB)	74%		
HDOP<10.0 Mask<15.0 C/N ₀ >30.0			

(velocity check in <u>high sensitivity</u> receiver)

	Lateral	Heading	Availability
C/N ₀ detection (7.0 dB)	38.4 cm	73.8 cm	72%
C/N ₀ detection (10.0 dB)	47.1 cm	96.3 cm	80%
HDOP<10.0 Mask<15.0 C/N ₀ >25.0			

Validation of Multipath (PRN-3)

Single Epoch RTK Processed in the Same Manner

	FIX Rate (Ratio >= 3.0)	Wrong FIX
Normal RTK	74.1%	0.0%
Normal RTK + MP rejection	92.0%	0.0%

<u>Where</u> or <u>when</u> is vulnerable to multipath?

Car Test 2

- 11/20/2009 40 min (5 Hz)
- Wide streets in <u>dense-urban</u> area (downtown Nagoya)
- Geodetic dual frequency receiver (same as before)
- Reference SV: PRN-19 (62 71 degrees elevation)
- 8-9 satellites in view over 10 degrees elevation
- Precise car position was post-processed by <u>POSLV</u> (provided by Toyota and Applanix).

Car tracks and satellite visibility

Temporal Multipath Errors by Our Proposed Method

DGPS Errors Analysis

Bad Satellite Rejection (MP[prn] ≥ 2.0m rejection)

- The percentage within 1m error: $26.0\% \rightarrow 36.5\%$ (56.3%)
- The percentage within 5m error: 53.0%→73.7% (93.5%)
 () means disregarding the case of "NVS<=3"

Single Epoch RTK

	FIX Rate (Ratio>=3.0)	Wrong Fix (>0.1m*HDOP)	NVS>=4 (Epochs)
Normal RTK	41.7%	2.1%	<u>9808</u> /12265
Normal RTK + MP rejection (2.0m)	50.9%	1.7%	<u>9213</u> /12265
Normal RTK + MP rejection (1.0m)	57.5%		<u>8626</u> /12265

Screening for Wrong Fix

(Case : Normal RTK+ MP rejection(1.0m))

Wrong Fix	Actual Horizontal	Limited Number
(>0.1m*HDOP)	Errors < 0.5m	of Epochs
163 epochs (1.8%)	100 epochs	

3 Events	NVS is 4	HDOP > 10.0	Return after
	(minimum)	(bad HDOP)	long No-Fix (10sec)
63 epochs	59 epochs	38 epochs	29 epochs

Fix	000000	000
No-Fix	****	\longrightarrow t

No epochs are not the case with the above 3 events !

Detecting dominant multipath signal (presented in ION 2005, kubo et al.)

• Detection method is very simple

Single Epoch RTK in the same manner

	FIX Rate (Ratio>=3.0)	Wrong Fix (>0.1m*HDOP)	NVS>=4 (Epochs)
Normal RTK	41.7%	2.1%	<u>9808</u> /12265
Normal RTK + C/N ₀ detection (10.0 dB)	47.2%	2.5%	<u>9510</u> /12265
Normal RTK + C/N ₀ detection (7.0 dB)	53.3%	1.8%	<u>8978</u> /12265
Normal RTK + C/N ₀ detection (5.0 dB)	55.5%		<u>8682</u> /12265