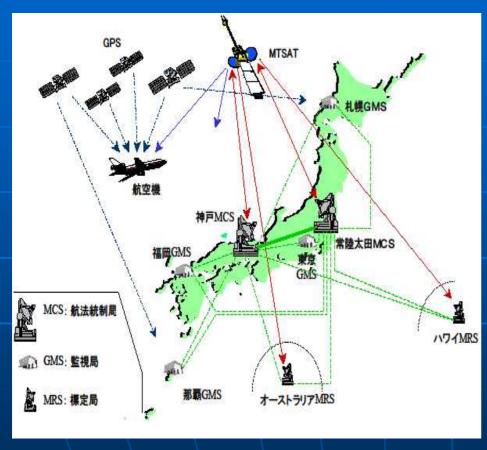
日本版広域補正システム MSASの測位精度評価

東京海洋大学 情報通信工学研究室 毛利 悠美子

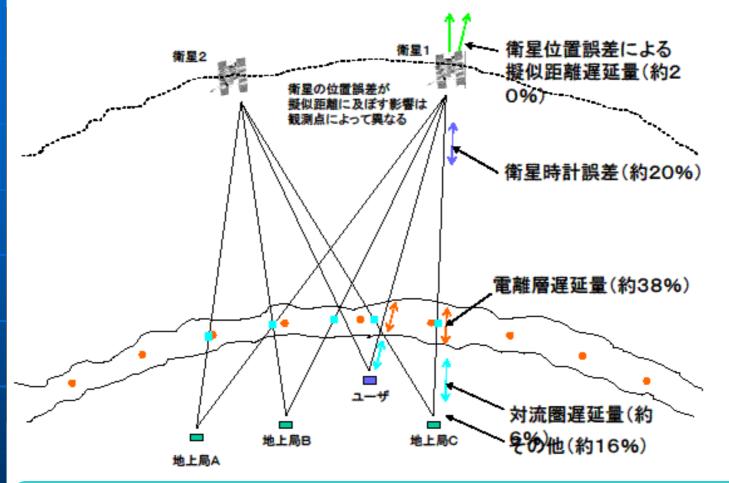
背景と目的

一周波受信機単独では数mの誤差がある 精度を上げるには補正データが必要


2007/9/27、航空用システムMSASがスタート GPS測位に使用できる補正データ(広域用)を衛星から送信

現在、補正データとその送信方法には海上保安庁中波ビーコン(近距離用)やインターネット(全地球用)がある

MSASの利用で測位精度がどの程度 向上し、サービスがどのように変わるか?


MSAS (運輸多目的衛星用衛星航法補強システム)

- H19年9月27日 正式運用開始
- 衛星を用いた日本独自の 航空管制用衛星システム
- DGPS方式で算出した GPS補強情報を送信
- 地上モニタ局でGPS測位信号の 誤差を測定
- 各地のデータを用いて総合的に 補正値を計算し衛星に送信
- 補正データを衛星から放送

	MSAS	海上保安庁中波 ビーコンDGPS	
配信方法	衛星(垂直方向)	中波無線(水平方向)	
環境の注意点	仰角が40~45度程度必要	放送局が沿岸部に集中 障害物があるとデータが届かない	
配信時間	リアルタイム	リアルタイム	
使用機器概要	GPSと同じ回路で使用可能	別途、専用の回路が必要	
観測局	国内6箇所 海外2箇所	国内27箇所	
サービス範囲	北緯5~65度 東経105~170度 (北太平洋·アジア)	放送局から200km程度 (日本全域の沿岸部)	
提供補正 情報内容	GPS信号誤差補正情報 電離層遅延補正情報 測距情報…等	全ての誤差要因を総合した補正値	

GPS誤差の要因とその大きさ

DGPSは空間、時間に由来する誤差要因を 排除することが可能

主な補正方式の補正情報内容

全ての誤差を ビー 統合した値を配信

伝送路由来の誤差(電離

MSAS 層遅延量)に分けて配信

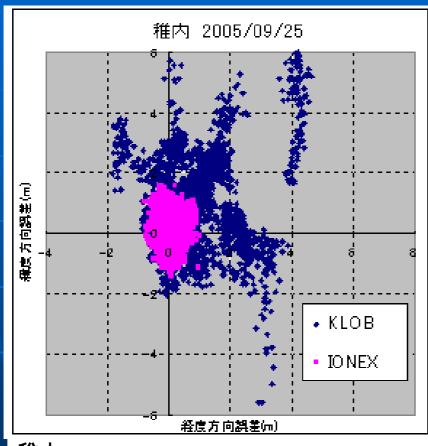
モデルで算出

[衛星位直 + 時計誤差] + [東西東近] + [対流圏遅延]

高精度測位用補正値(IGS* 全ての誤差を別々に配信 [衛星位置] + [時計誤差] + [電流電運延] + [対流圏遅延]

電離層遅延補正量の比較

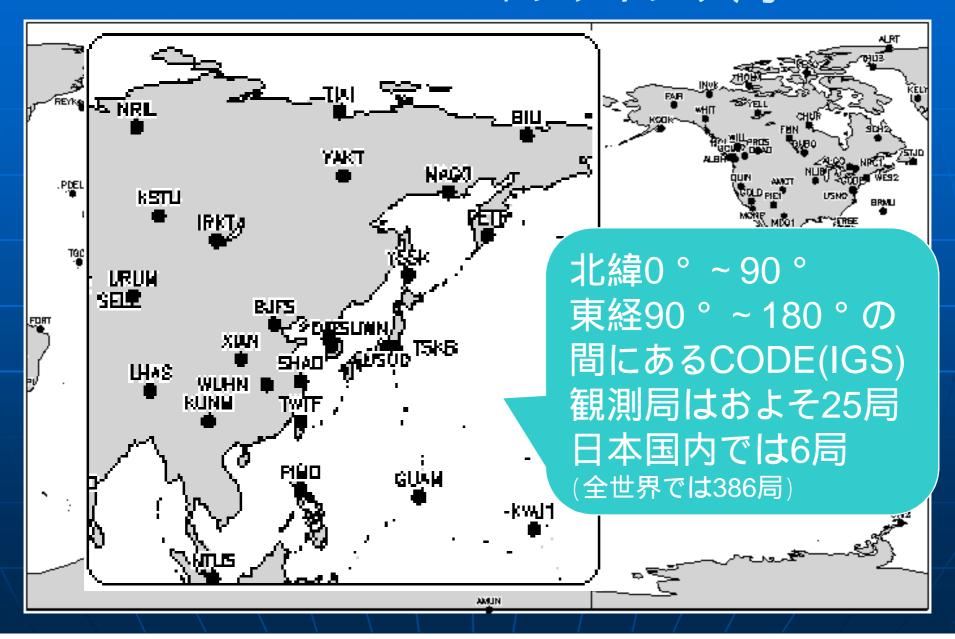
- MSAS
- IONEX: CODE精密データの形式
- □ クロブッチャモデル:通常の単独測位に用いる従来モデル の3方式について電離層遅延補正量の比較を行う

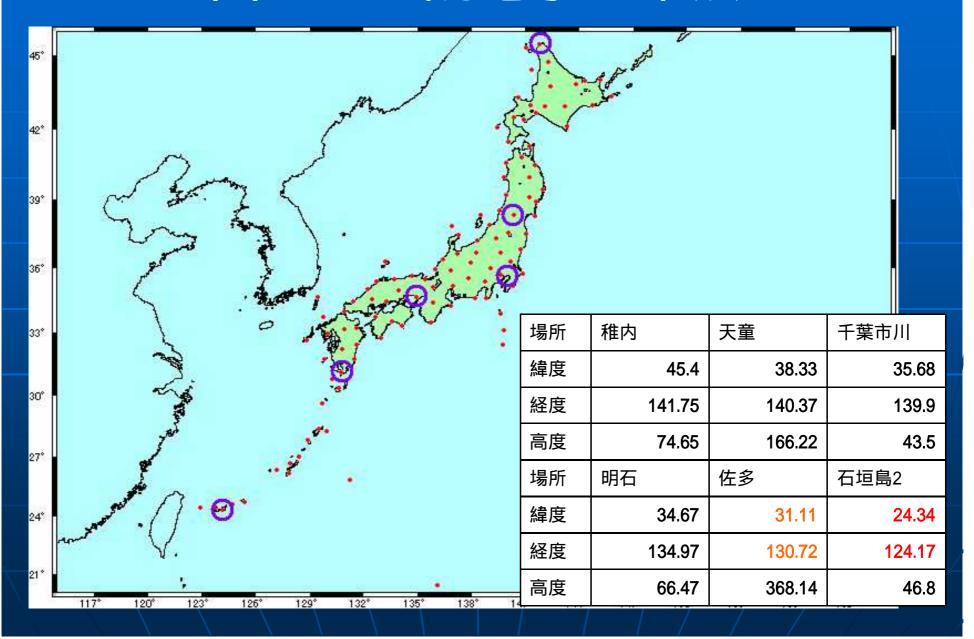

同じ国土地理院電子基準点のデータを使用し 電離層遅延補正量を比較する

■ 評価方法

<u>2周波測位による電離層遅延量は非常に正確</u>であるため、 実際の電離層遅延量と誤差が無いとみなせる

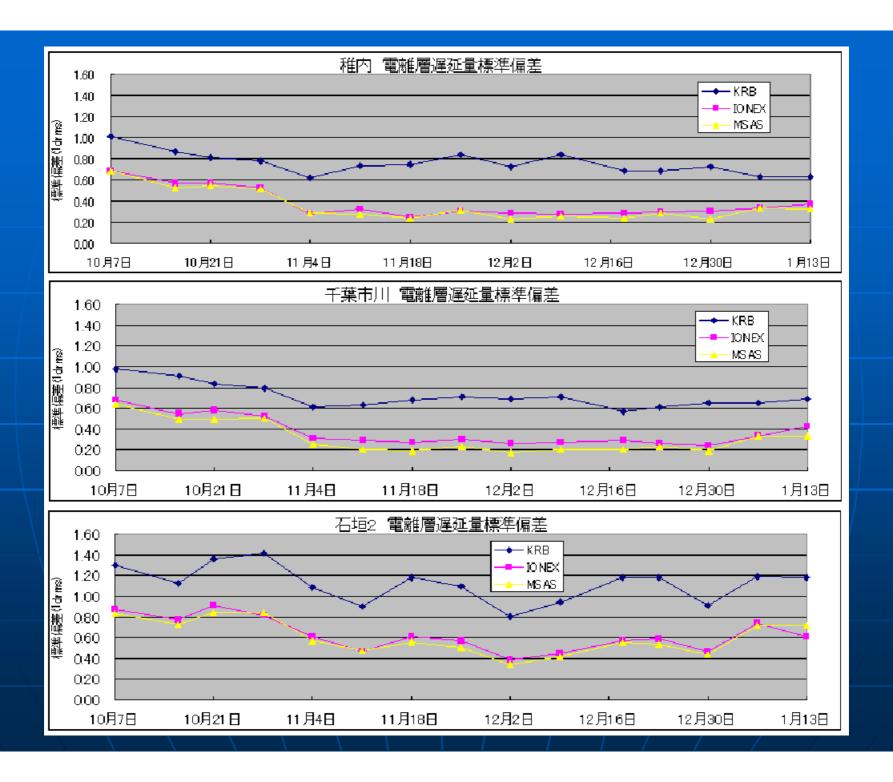
2周波による遅延量とそれぞれの遅延量との差 (実際の電離層遅延量値との差)をとり標準偏差を比較した

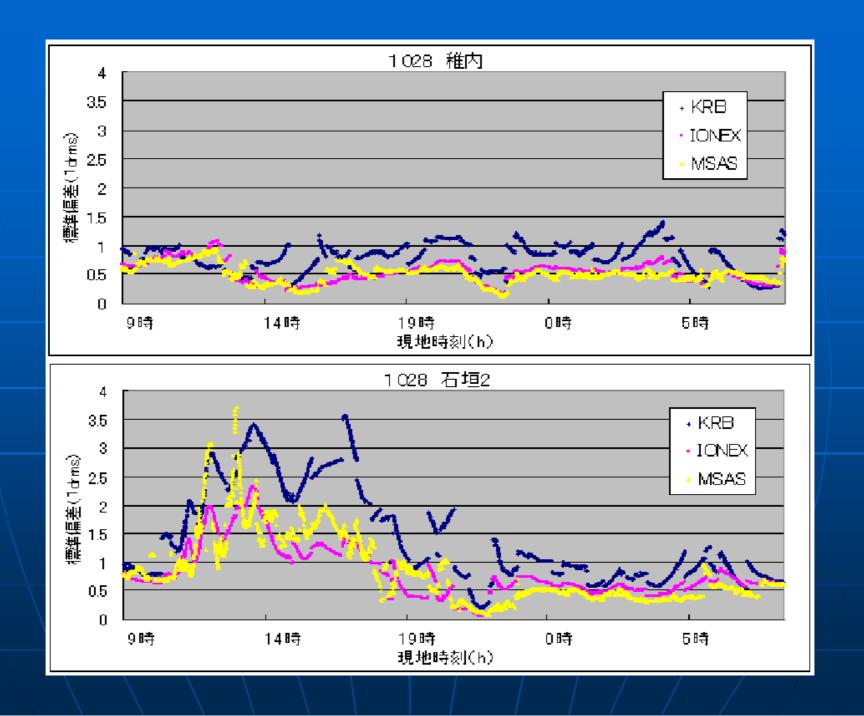

精密補正データ(IGS及びCODE)


稚内 (通常 高精度)

	精密補正データ	
用途	GPS測位補正用	
データ配信 方法	インターネット	
データ配信時間	後処理及び予測値 (複数存在)	
観測局	全世界386局 国内6局 (日本近郊では25局)	
サービス範囲	地球全域	
提供補正 情報内容	精密軌道暦(IGS) 精密衛星時計(IGS) 全地球電離層分布図 (CODE):IONEX形式	

CODE GPSトラッキング局


国土地理院電子基準点



電離層遅延補正量の標準偏差の平均(10月)

稚内	10月7日	10月16日	10月21日	10月28日
MSAS	0.70	0.53	0.51	0.52
IONEX	0.70	0.57	0.56	0.53
KRB	1.02	0.87	0.79	0.78
天童	10月7日	10月16日	10月21日	10月28日
MSAS	0.70	0.53	0.51	0.50
IONEX	0.74	0.58	0.59	0.57
KRB	1.03	0.93	0.83	0.80
千葉	10月7日	10月16日	10月21日	10月28日
MSAS	0.64	0.50	0.50	0.51
IONEX	0.69	0.56	0.58	0.53
KRB	0.98	0.92	0.84	0.80

明石	10月7日	10月16日	10月21日	10月28日
MSAS	0.68	0.53	0.54	0.56
IONEX	0.73	0.60	0.65	0.59
KRB	1.01	0.94	0.91	0.86
佐多	10月7日	10月16日	10月21日	10月28日
MSAS	0.68	0.49	0.54	0.62
IONEX	0.78	0.59	0.70	0.67
KRB	0.99	0.89	0.93	1.01
石垣2	10月7日	10月16日	10月21日	10月28日
MSAS	0.84	0.74	0,84	0.85
IONEX	0.89	0.77	0.92	0.82
KRB	1.30	1/13	1.36	1,41

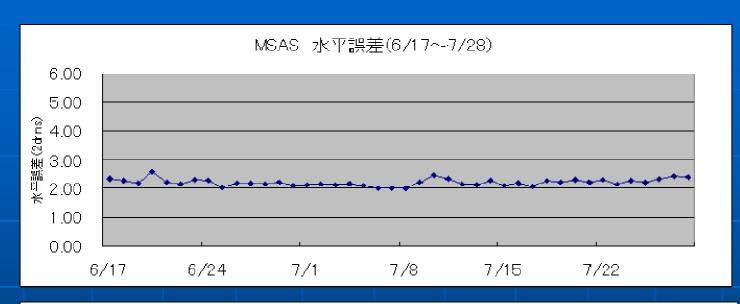
実験概要

MSASと海上保安庁ビーコンDGPSについて 静止点観測と船舶実験から測位精度の評価を行う

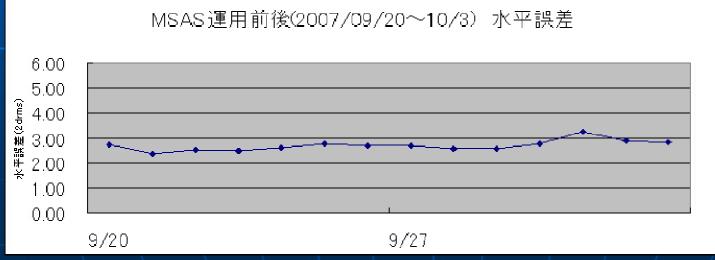
- どちらの実験も単独測位, MSAS, ビーコンDGPS (浦安・剱埼)の4方式で測位する
- 静止点観測は東京海洋大(江東区)屋上にアンテナを 設置し長時間観測
- 船舶実験は東京湾~沿岸にて行い、 真位置は後処理RTKにて算出した

1)静止点観測

- **2**007/06/16 ~ 2007/07/28
- 単独測位, MSAS, ビーコンDGPS(浦安·剱埼)の 4方式
- 使用アンテナ:JLR-4331E改 (MSAS・ビーコンDGPS受信機)
- アンテナ真位置は 後処理RTKで算出 (Novatel OEMV)


図 静止点アンテナ

測位結果 单独測位(6/17~7/28)



水平誤差 平均 3.44

測位結果 MSAS

水平誤差 平均 2.22

水平誤差 平均 2.69

2007/09/27~ MSAS正式運用

測位結果 ビーコンDGPS(6/17~7/28)

水平誤差 平均 1.72

水平誤差 平均 1.65

2)船舶実験

- **2007/07/24 ~ 26**
- 汐路丸(425t,50m)
- RTKには以下を用いて
 - 10cm程度の測位精度を確保
 - 東京海洋大学研究室屋上
 - 国土地理院館山基準局観測データ
 - 富津小学校に設置した臨時基準局

■使用機器:

- JRC-4330W (GPS·MSAS受信機)
- CSI Wireless 製 MBX-3 (中波ビーコンDGPS補正データ受信機)
- Novatel OEMV (高精度RTK用受信機)

図 Novatelアンテナ

汐路丸 実験航路(2007/07/24~26)

25日11:30 野島崎にて折り返し

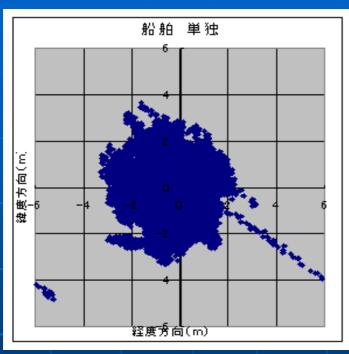
折り返し時に DGPS基準局及び MSAS/単独測位を 切り替え

解析には各工程の16時間分を抽出

船舶実験

Novatel受信機を用いた場合の測位結果

	単独1	単独2	MSAS
水平誤差2dr	4.29	2.25	1.31
高度誤差2dr	4.61	3.42	2.07
水平方向平均ずれ	0.52	0.175	0.142

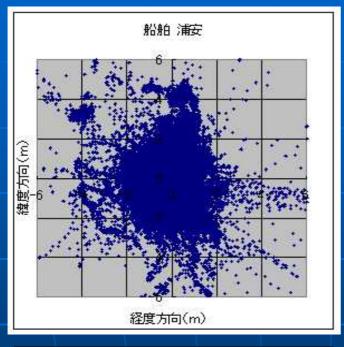

(単位m)

単独1: 通常の単独測位 クロブッチャモデル

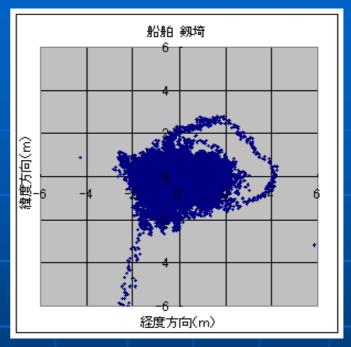
単独2: 通常の単独測位 + 2周波の電離層使用

MSAS : MSAS補正 補正率100%

船舶実験 単独測位 / MSAS

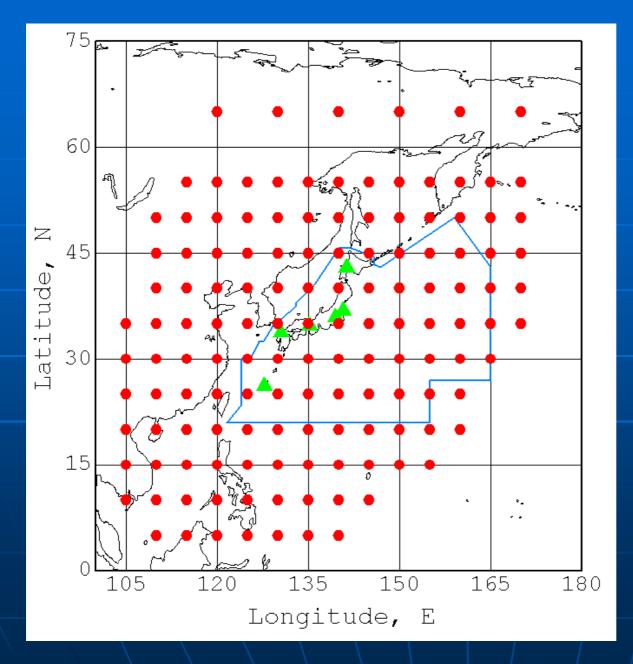


経度方向	(m)
	単独測位
水平誤差(2drms)	3.15
真値からのずれ平均 緯度(m)	-0.09
真値からのずれ平均 経度(m)	-0.47


船舶 MSAS
4
-2 0 2 4 6
-4
経度 分 向(m)

		MSAS
水平誤差(2drms	5)	2.65
真値からのずれ平 緯度(m)	Z均	-0.04
真値からのずれ平 経度(m)	Z均	-0.16
補正データ取得率	99	9.62%

船舶実験 ビーコンDGPS浦安/剱埼


	浦安
水平誤差(2drms)	5.32
真値からのずれ平均 緯度(m)	-0.33
真値からのずれ平均 経度(m)	-0.26
補正データ取得率	70.15%

	剱埼
水平誤差(2drms)	2.07
真値からのずれ平均 緯度(m)	-0.23
真値からのずれ平均 経度(m)	0.03
補正データ取得率	99.35%

結論

- MSASの補正データ(電離層遅延量)は補正効果がある・IONEXとの比較から精密補正データと同程度の精度があるといえる
- ただし低緯度地域では他の補正方法同様、補正効果が落ちる ・現状ではこれ以上の補正は困難
- 静止、移動体共にビーコンDGPSによる精度改善が最も大きい ・MSASでも補正効果が得られ精度が改善している 視界の開けた屋上、海上では十分な効果が得られた
- ビーコンDGPSでは局によって補正データ取得率が悪く 十分な補正効果が得られない場合もあった
 - ・ビーコンDGPSの測位精度が良いのは観測局(基準局)から数十キロ程度
 - ・MSASは観測局との距離はあまり測位結果に響かない 内陸部や沖合いではMSASの方が精度が良くなると思われる

MSASモニタ局

- ■国内6局
 - ●札幌
 - ●常陸太田
 - ●東京
 - ●神戸
 - ●福岡
 - ●那覇
- ■国外2局
 - ●オーストラリア
 - ハワイ

海上保安庁中波ビーコン(中波無線方位信号所)

- 船舶の方向探知用
- 測位精度は現行の補正 システムの中でも良い
- 放送局が沿岸部に集中 内陸部や無線の届かない 沖合い、入り組んだ湾内等の 障害物の多い地域では 補正情報が届かない場合も ある

標準偏差の平均(10月)

稚内	10月7日	10月16日	10月21日	10月28日
MSAS	0.696	0.532	0.509	0.516
IONEX	0.703	0.572	0.564	0.531
KRB	1.022	0.873	0.793	0.781
天童	10月7日	10月16日	10月21日	10月28日
MSAS	0.695	0.528	0.514	0.501
IONEX	0.739	0.577	0.588	0.570
KRB	1.026	0.928	0.829	0.803
千葉	10月7日	10月16日	10月21日	10月28日
MSAS	0.644	0.499	0.500	0.510
IONEX	0.687	0.555	0.585	0.535
KRB	0.978	0.917	0.840	0.797

明石	10月7日	10月16日	10月21日	10月28日
MSAS	0.679	0.531	0.536	0.561
IONEX	0.731	0.596	0.655	0.589
KRB	1.010	0.936	0.913	0.863
佐多	10月7日	10月16日	10月21日	10月28日
MSAS	0.679	0.488	0.539	0.622
IONEX	0.775	0.590	0.700	0.666
KRB	0.991	0.887	0.934	1.008
石垣2	10月7日	10月16日	10月21日	10月28日
MSAS	0.844	0.737	0.844	0.850
IONEX	0.887	0.772	0.915	0.815
KRB	1.302	1.134	1.361	1.413

	MSAS	海上保安庁中波ビーコン DGPS	IGS精密補正データ
用途	航空管制用システム	船舶用システム	GPS測位補正用
データ配信方法	衛星(垂直方向)	中波無線(水平方向)	インターネット
環境の注意点	仰角が40~45度程度 必要	障害物があると補正情報 が届かない	ネット環境が必要
データ配信時間	リアルタイム	リアルタイム	後処理及び予測値(複 数存在)
使用機器概要	GPSと同じ回路で使用で きる	GPSと別途に専用の回路 が必要	ネット環境が必要
観測局	国内6箇所 海外2箇所	国内27箇所	全世界386局 国内6局 (日本近郊では25局)
サービス範囲	北緯5~65度·東経105~ 170度(日本を中心とした 北太平洋·アジア)	放送局から200km程度 (日本全域の沿岸部)	地球全域
提供補強情報 内容	GPS信号誤差補正情報 電離層遅延補正情報 衛星の異常有無 測距情報…等	全ての誤差要因を総合した補正値	精密軌道暦(IGS) 精密衛星時計(IGS) 全地球電離層分布図 (CODE):IONEX形式