IMPROVEMENT OF THE GPS PERFORMANCE IN URBAN CANYON USING QZSS

ITS Asia-Pacific 09
Bangkok, Thailand

Nobuaki Kubo (Tokyo University of Marine Science and Technology)
Satoshi Kogure (Japan Aerospace Exploration Agency)
Table of Contents

- Motivation
- Satellite Constellation
- Software-Based Simulator
- Stand-alone Positioning
- Test and Results
- Summary
Motivation

- **Background**
 One of the Key technologies for ITS is GNSS.
 QZSS will be launched in summer of 2010.
 QZSS would bring large benefits to users especially in urban canyon…
 East Asia has a huge population.

- **Viewpoints in this study**
 It is important for us to show the performance of the combined GPS-QZSS.
 Low-cost receivers are used for the fundamental navigation service.
 DGPS is widely used at present, but stand-alone service is still important.
 There is no problem under open sky… but under urban canyon?

The objective of this paper is to show the benefits by QZSS in large Asian cities.
Satellite Constellation

- The GPS configuration used is GPS YUMA almanac of GPS week 488 2009. The date is January 1st in 2009.

- The QZSS configuration used is the most likely constellation referring to the article by JAXA.
The software simulator generates pseudo-range and carrier-phase. Several errors are considered in this simulation.

* **Tracking Errors** (based on the equation)

* **Ephemeris (inc. clock) Errors** (deduced from the difference between IGS final and ephemeris)

* **Ionospheric Errors** (deduced from the difference between dual-frequency based and broadcast model)

We have to be careful that the solar activity is very low at present. The ionospheric errors in 2008 will be approximately lower than the one-third of the ionospheric errors in 2001.
Effects of Urban Canyon

- As a configuration of obstacle, mask angle is used. Different mask angles are set at 15, 30 and 45 degrees.
- From the real configuration in the dense urban area in Tokyo, the rate of interrupted sky is mostly from 0.6 to 0.7. When we set the mask angle 45 degrees, the rate of interrupted sky is 0.75 (30 degrees: 0.57, 15 degrees: 0.31).

3 lanes in each way
The rate of interrupted sky ≈ 0.6

Typical case of masking condition in Tokyo
Multipath Errors?

- Multipath reflection effect is not considered.
- The effect of urban canyon could be simulated to some degree by considering mask angle because the influence of large DOP is dominant in urban canyon.
- Since even low-cost receiver is going to have a better correlation technique, the long-delayed strong multipath will be reduced in the near future. Low-cost receiver has already used the advantage of robust Doppler frequency.
Doppler Aiding Performance (low-cost high-sensitivity receiver)

This place is surrounded by many high-rise buildings in Tokyo

Only Pseudo-range

Pseudo-range + Doppler aiding

Doppler aiding is quite effective to reduce multipath errors but good satellite constellation is still required to maintain good performance.
Several scenarios have been evaluated. Each scenario uses a different model and mask angles (15, 30 and 45).

<table>
<thead>
<tr>
<th>Constellation for each scenario</th>
<th>Locations of selected cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constellation</td>
<td>Latitude</td>
</tr>
<tr>
<td>Scenario1</td>
<td>GPS</td>
</tr>
<tr>
<td>Scenario2</td>
<td>GPS + 3QZS</td>
</tr>
<tr>
<td>Scenario3</td>
<td>GPS + 6 QZS</td>
</tr>
<tr>
<td>Scenario4</td>
<td>GPS + 3 GPS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test and Results

- Period1: 1 day (1/1/2009)
- Period2: 1 year average (to check long period orbit)
- Interval: Every 30 seconds
- Performance Criteria:
 Number of Visible Satellites
 DOP
 Stand-alone Positioning without Doppler or Carrier Aid

Mask: 45 degrees
Mask: 30 degrees
Number of Visible Satellites

Mask: 45 degrees max/min/1day average/(1year average)

<table>
<thead>
<tr>
<th>City</th>
<th>GPS</th>
<th>GPS+3QZS</th>
<th>GPS+6QZS</th>
<th>GPS+3GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beijing</td>
<td>7/1/3.1 (3.2)</td>
<td>9/2/4.7 (4.7)</td>
<td>10/4/6.2</td>
<td>7/2/3.5</td>
</tr>
<tr>
<td>Seoul</td>
<td>6/1/3.0 (3.1)</td>
<td>8/2/4.7 (4.7)</td>
<td>9/4/6.4</td>
<td>6/1/3.3</td>
</tr>
<tr>
<td>Tokyo</td>
<td>6/1/3.1 (3.1)</td>
<td>8/2/4.8 (4.8)</td>
<td>9/4/6.4</td>
<td>6/1/3.3</td>
</tr>
<tr>
<td>Shanghai</td>
<td>6/1/3.1 (3.2)</td>
<td>8/3/4.8 (4.9)</td>
<td>9/4/6.4</td>
<td>6/1/3.4</td>
</tr>
<tr>
<td>Bangkok</td>
<td>5/0/2.6 (2.6)</td>
<td>7/1/3.8 (3.9)</td>
<td>9/2/5.7</td>
<td>6/0/3.0</td>
</tr>
<tr>
<td>Singapore</td>
<td>4/1/2.6 (2.6)</td>
<td>6/1/3.6 (3.6)</td>
<td>7/2/4.9</td>
<td>5/1/2.9</td>
</tr>
<tr>
<td>Sydney</td>
<td>6/1/3.1 (3.1)</td>
<td>7/2/4.5 (4.5)</td>
<td>9/3/5.8</td>
<td>6/1/3.6</td>
</tr>
</tbody>
</table>

Mask: 30 degrees same manner

<table>
<thead>
<tr>
<th>City</th>
<th>GPS</th>
<th>GPS+3QZS</th>
<th>GPS+6QZS</th>
<th>GPS+3GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokyo</td>
<td>7/3/5.1 (5.1)</td>
<td>9/5/7.1 (7.1)</td>
<td>10/6/7.8</td>
<td>8/3/5.5</td>
</tr>
<tr>
<td>Bangkok</td>
<td>8/3/5.2 (5.2)</td>
<td>10/5/7.4 (7.4)</td>
<td>13/8/9.8</td>
<td>9/3/5.7</td>
</tr>
<tr>
<td>Singapore</td>
<td>7/2/4.8 (4.8)</td>
<td>10/4/7.3 (7.3)</td>
<td>13/7/10.1</td>
<td>8/2/5.3</td>
</tr>
</tbody>
</table>
Stand-alone Positioning Performance

Percentage meets with horizontal errors is below 10 m.
Temporal Horizontal Errors in Tokyo (GPS+3QZS, Mask 45)
Summary and Future Plans

- The performance of general stand-alone positioning in large Asian cities is analyzed for different scenarios of the present GPS and combined future GPS-QZSS system.
- The results show that adding QZS clearly improves the availability and positioning performance in selected large Asian cities.
- In east Asia, QZS stays at high elevation for a long time. Even at low latitudes including Bangkok and Singapore, QZS stays at medium elevation for a long time.
- The result also indicates that more than 6 QZS satellites will be required if we need more robust navigation in the dense urban area.
- We will analyze another constellation such as 3 QZS + 3 GEO. Other world-wide GNSS will have to be considered.
Thank you !
Percentage meets with PDOP < 10

<table>
<thead>
<tr>
<th></th>
<th>GPS</th>
<th>GPS+3QZS</th>
<th>GPS+6QZS</th>
<th>GPS+3GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beijing</td>
<td>80/13</td>
<td>93/39</td>
<td>96/52</td>
<td>83/18</td>
</tr>
<tr>
<td>Seoul</td>
<td>85/10</td>
<td>96/44</td>
<td>99/59</td>
<td>89/13</td>
</tr>
<tr>
<td>Tokyo</td>
<td>82/10</td>
<td>96/52</td>
<td>100/79</td>
<td>86/13</td>
</tr>
<tr>
<td>Shanghai</td>
<td>85/9</td>
<td>94/44</td>
<td>97/57</td>
<td>87/14</td>
</tr>
<tr>
<td>Bangkok</td>
<td>82/6</td>
<td>98/21</td>
<td>100/54</td>
<td>86/12</td>
</tr>
<tr>
<td>Singapore</td>
<td>67/3</td>
<td>92/17</td>
<td>100/47</td>
<td>75/8</td>
</tr>
<tr>
<td>Sydney</td>
<td>78/10</td>
<td>93/35</td>
<td>99/68</td>
<td>83/20</td>
</tr>
</tbody>
</table>
Flowchart

Start

Initial Setting

Satellite Position (almanac)

Error Setting

Pseudo-range Generation

DOP calculation

Stand-alone Positioning

24 hours ?

Finish

SATs >= 4

yes

no