ソフトウェアGPS+SBAS受信機の開発に関して

電子航法研究所 通信·航法·監視領域 近藤俊一郎 星野尾一明

項目

- 背景(SBAS、電離層シンチレーション)
- ソフトウェア受信機
- ■受信機の精度
- シンチレーション影響
- ■今後の方針

SBAS

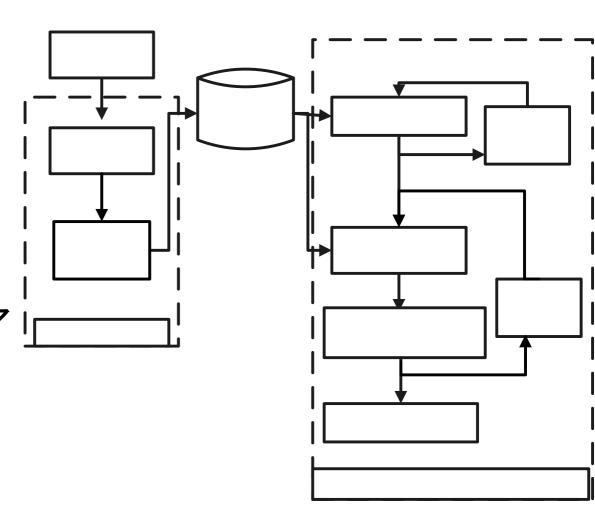
- ICAO(国際民間航空機関)が規格化した広域ディファレンシャルGPS方式による補強システム
 - □大陸規模で有効な補強情報を静止衛星から放送。
 - □ GPSと同一のアンテナ、受信回路で補正情報やイン テグリティ情報が得られる。

MSAS

□ 昨年2月にMTSAT-1R(PRN129) 今年2月18日に MTSAT-2(PRN137)を打ち上げ、現在試験中。

電離層シンチレーション

- 電離層の局地的な不規則性によって、GPS信号の信号強度、 位相が急激に変化する現象
- 受信機内でのサイクルスリップ
- GPSおよび補強システムの完全性(インテグリティ)、利用性 (アベイラビリティ),連続性(コンティニュイティ)に影響
- シンチレーションパラメータ
 - \Box 位相分散 σ_{ϕ}
 - \square 信号強度変化の分散 S_4


目的

- 電離層シンチレーションに対する受信機のロバスト 性の確保
 - □ 電離層シンチレーションが及ぼす搬送波追尾への影響の 推定
 - □ 搬送波追尾ループのフィルタ(雑音帯域幅)の調整
- GPS,SBAS対応のソフトウェア受信機の利用
 - □バッチ処理による信号の解析
 - □シンチレーションに対するロバスト性の検証
 - □アルゴリズムの検討

ソフトウェア受信機

- フロントエンド
 - □ダウンコンバータ
 - □ ADコンバータ

- 信号処理ソフトウェア _□ (MATLAB)
 - □信号捕捉
 - □信号追尾
 - □擬似距離測定
 - □測位計算

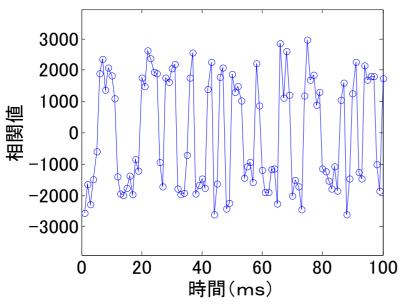
フロントエンド

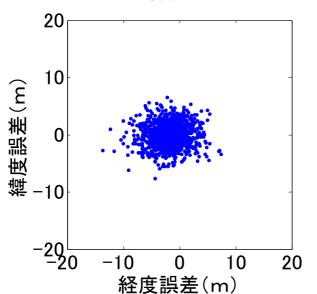
Dual Channel Downconverter (CRS社製)

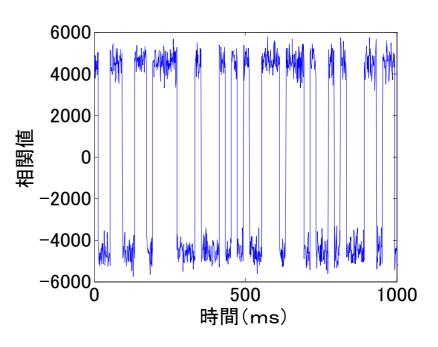
周波数	1. 57542GHz (L1)	
	1. 2276GHz (L2)	
IF (中間周波数)	13. 991429MHz (L1)	
	13. 60 (L2)	
帯域幅	18MHz	
ゲイン	65dB	
REF 周波数	10MHz	

PCDAQ (アイダックス社製)

サンプリング周波数	最大105MHz
分解能	14bit
チャンネル数	4ch
収集容量	最大1.44TB




信号処理ソフトウェア

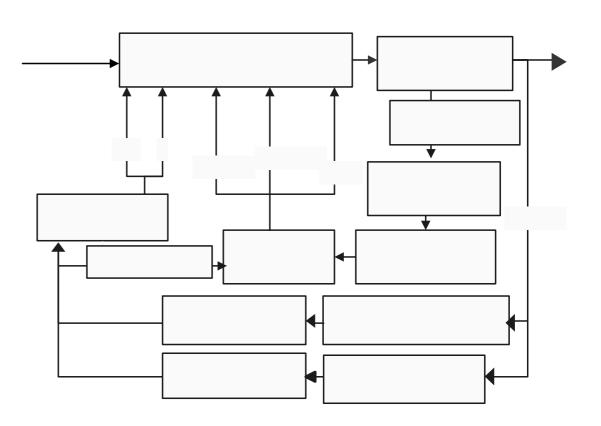

- 信号捕捉(Acquisition): FFTベース
- 信号追尾(Tracking)
 - □コード追尾ループ: DLL
 - □搬送波追尾ループ: PLL FLL
- 測位計算: 単独測位(最小二乗法)

	GPS	SBAS
信号捕捉	L1CAのみ	PRN:129,134,137
信号追尾	L1CAのみ	PRN:129,134,137
Decoding 復号	L1CAのみ	追加予定
擬似距離測定	L1CAのみ	追加予定

Performance

■ 追尾ループ出力

- □ PRN14:46dB
- PRN134:40dB


■ 単独測位結果

□ 2drms:5~10m

信号追尾ループ

コード追尾ループ DLL (2nd) 搬送波追尾ループ PLL (3rd)

FLL (2nd)

PLL loop filter (Kaplan, 1996)

$$F(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 - 2z^{-1} + z^{-2}}$$

$$F(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 - 2z^{-1} + z^{-2}}$$

$$b_0 = \frac{T_{coh}^2 \omega_0^3}{4} + \frac{a_3^{(0)} \omega_0^2 T_{coh}}{2} + b_3^{(0)} \omega_0$$

$$b_1 = \frac{T_{coh}^2 \omega_0^3}{2} - 2b_3^{(0)} \omega_0$$

$$b_2 = \frac{T_{coh}^2 \omega_0^3}{4} - \frac{a_3^{(0)} \omega_0^2 T_{coh}}{2} + b_3^{(0)} \omega_0$$

$$a_3^{(0)} = 1.1$$
 $b_3^{(0)} = 2.4$ $\omega_0 = B_n / 0.7845$

 ω_0 :自然周波数 T_{coh} :サンプリング間隔 B_{i} :雑音帯域幅

```
Bn = (10*pi;)
                                                              %nos
                            %no
                                         Bn = (18*pi;
       W0=Bn/0.7845;
                                         W0=Bn/0.7845;
       Tooh=1e-3:
                                        Tooh=1e-3;
       b0=Tcoh*Tcoh*W0*W0*W0/4
                                 24 -
                                         b0=Tcoh*Tcoh*W0*W0*W0/4
       b1=Tcoh*Tcoh*W0*W0*W0/2
25
                                 |25| -
                                         b1=Tcoh*Tcoh*W0*W0*W0/2
       b2=Tcoh*Tcoh*W0*W0*W0/4
                                 26 -
                                         b2=Tcoh*Tcoh*W0*W0*W0/4
```

電離層シンチレーション

- 位相分散 σ_φ
- 信号強度変化の分散 S₄

$$\sigma_{\phi s} = \sqrt{E\langle \phi^2 \rangle}$$

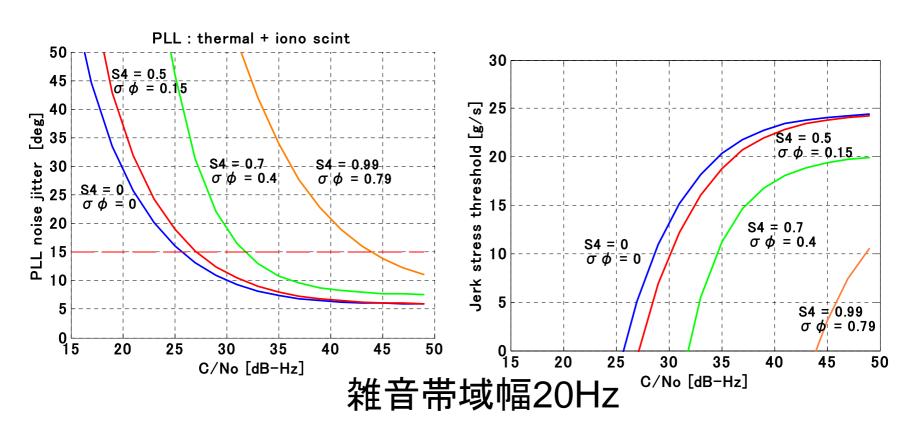
$$S_4 = \sqrt{\frac{E\langle SI^2 \rangle - E\langle SI \rangle^2}{E\langle SI \rangle^2}}$$

 $E\langle \
angle :$ 期待值 ϕ :搬送波位相 SI:信号強度

シ	/ンチレーション クラス	S4 at L1	σ ϕ (rad) at L1
	強	≧1.0	≥0.8
	中	0.7-0.75	0.4
	弱	0.4-0.5	0.15
	微弱	≦ 0.1	≦0.05

シンチレーションの影響(1/2)

$$\sigma_{\phi T}^{2} = \frac{B_{n}}{c / n_{0} (1 - S_{4}^{2})} \left(1 + \frac{1}{2 \eta c / n_{0} (1 - 2S_{4}^{2})} \right)$$


■ サイクルスリップの平均時間

$$\bar{t} = \frac{\pi^2}{800\sigma_{\phi\varepsilon}^2 B_n} I_0^2 \left(\frac{1}{4\sigma_{\phi\varepsilon}^2} \right)$$

ダイナミックストレスの上限

$$D_{thre} = \frac{B_n^3}{0.4828} (45 - 3\sigma_{\phi \varepsilon}) [m/s^3]$$

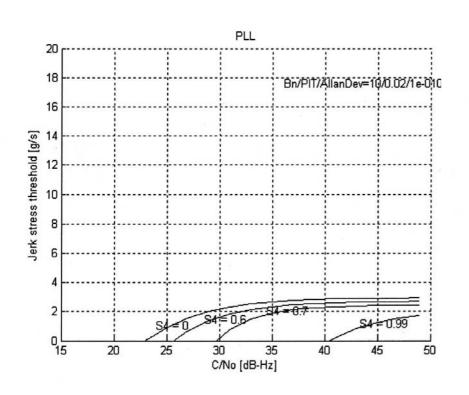
シンチレーションの影響(2/2)

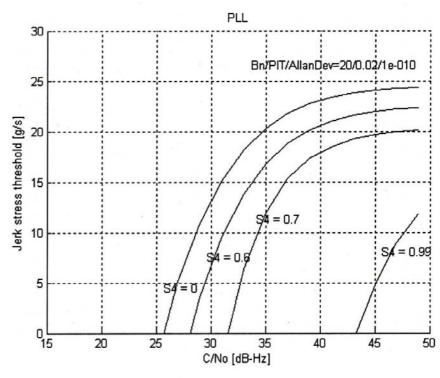
ジッタの軽減には狭帯域 ダイナミックストレスには広帯域

まとめ

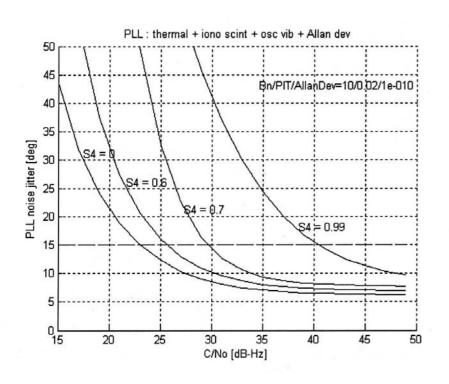
- ソフトウェア受信機によるシンチレーションへの ロバスト性の検証は可能
- 精度の評価を行うには残ったSBASモジュール の製作が必要
- ダイナミックストレス(衛星ー受信機間)、シンチレーションの最大値を考慮し、最適化な帯域を推定

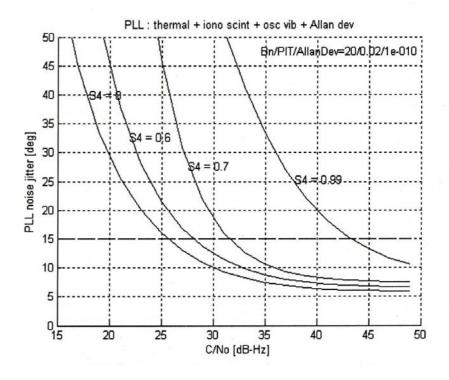
今後の方針


■雑音帯域幅の調整


■ 雑音帯域幅の可変型アルゴリズム

■ 実測もしくはシミュレータによってシンチレーション信号を取得


■信号解析によりロバスト性の検証


Jerk dynamic stress at threshold

PLL Jitter noise as a function of CN0

