Cooperative Relative Positioning for Intelligent Transportation System

Suhua TANG†, Nobuaki KUBO‡, Masayoshi OHASHI†
†ATR Adaptive Communications Research Laboratories, Japan
‡Tokyo University of Marine Science and Technology, Japan

Nov. 7, 2012
ITST 2012, Taipei, Taiwan
Outline

- Research background on ITS
- Related work on dealing with reflected signals in positioning
- Proposed scheme: cooperative relative positioning
- Simulation evaluation
- Initial experiment results
- Conclusion
Research Background

Typical applications of ITS

- Drive-thru data communications
- Car navigation
- ETC
- Support system for safe driving

• Inter-vehicle relative position
 - GPS positioning + inter-vehicle communications
 - Problem: degradation of positioning accuracy in urban areas

Support system for safe driving: Maintain three distances
Related Work

- Propagation of positioning signals in urban area
 - Reflected signal instead of line-of-sight signal due to obstruction and reflection
 - Cannot be well solved by DGPS [1][5]

Existing solutions to reflected signals

1. Antenna design
2. Correlator refinement [6-8]
3. Modulation design [9]
4. Carrier smoothing [10]
5. Signal separation
 - Multipath estimating delay lock loop [11]
 - Spatial sampling via antenna array [12]
6. Detection of line-of-sight path
 - 3D GIS database [13]
 - Infrared camera [14]

Existing solutions: detection and removal of reflected signals

Dilemma in absolute positioning
- Using reflected signal leads to degradation of positioning accuracy
- Removing reflected signals leads a shortage of satellites and increases the outage probability
System Model

- **Target:** improving accuracy of relative position of vehicles in urban area
- **Effect of obstruction of buildings**
 - Different views of the sky
- **Separate selection of satellites**
 - Different trends of errors
- **Possible correlation of reflected signals**
 - Short inter-vehicle distance
 - Reflected by same building
- **Using correlated signals**
 - Correct relative position

Fig. 2
Correlation Detection

Pseudo-range
vehicles: \(n = a, b \)
satellites: \(s = k, l \)
\[
\rho_n^{(s)} = \rho_n^{(s)} + c \cdot (\Delta t_n - \Delta T^{(s)}) + d_{ion,n}^{(s)} + d_{trop,n}^{(s)} + \varepsilon_n^{(s)}
\]

Errors with spatial correlation
- Reference satellite \(l \) (high elevation angle): both vehicles receive direct signals
- Correlation detection on common satellite \(k \)

Double difference of measured pseudo-ranges
\[
\rho_{ab}^{(kl)} = \rho_{ab}^{(kl)} + (\varepsilon_a^{(k)} - \varepsilon_b^{(k)}) - (\varepsilon_a^{(l)} - \varepsilon_b^{(l)})
\]

MP errors of satellite \(k \)
Approx. 0

\[
\rho_n^{(s)} = |\hat{r}_n - r_n^{(s)}|
\]

Signals from common satellite \(k \): correlated if \(|p_{ab}^{(kl)} - \rho_{ab}^{(kl)}| < \text{threshold} \)
Whole Process of Positioning

1. Position prediction
2. Range estimation
3. Common satellite selection
4. Position update

$t = m - 1$
$t = m$

Vehicle a
Vehicle b

Common satellite selection
Estimated range
Measured pseudo-range
Simulation Configuration

- Simulating pseudo-range errors by ray tracing: line-of-sight signal and 1 reflection
- Sidewalk, roads and roadside buildings
 - Sidewalk/lane: see Fig.5
 - Building height: uniform distribution in 20-30m, building length: uniform distribution in 0-30m
- Two vehicles: same speed=30km/h, fixed distance=20m
- Compared schemes
 - NoCommSat: 2 vehicles exchange positions, from which relative position is computed.
 - CommSat: 2 vehicles exchange pseudo-ranges, using pseudo-range of common satellites to compute relative position.
 - KF+CommSat: Based on CommSat, obtaining vehicle speed and using Kalman filter to combine GPS positioning and position prediction.
 - CoRelPos (proposed Cooperative Relative Positioning scheme): Based on KF+CommSat, using correlated pseudo-ranges of common satellites to compute relative position.
Simulation Results

- Evaluation under two cases
- Evaluation metric:
 Complimentary cumulative distribution functions (CCDFs) of horizontal errors.
 \[CCDF(x) = \text{prob}(\text{error}>x) \]

Fig. 5

Fig. 6 Distribution of horizontal errors (Same lane)

Fig. 7 Distribution of horizontal errors (Different lanes)
Experiment Evaluation

- **Configuration**
 - Use NovAtel receivers, with raw pseudo-range outputs
 - Two receivers on top of a vehicle: known ground truth of relative position

- **Investigating**
 - The potential effect of using common satellites: decrease in #satellites, increase in HDOP
 - Correlation of received signals: SNR, correlation detection metric

- **Initial experiment results of relative positions**

Fig. 8 Experiment setup
Experiment Courses

- ATR course
 Approx. open sky

- Kyoto course
 Between open-sky and urban canyon
Experiment Result 1

- Investigating the potential effect of using common satellites
- Effect 1: decrease in #satellites, CDF(x) = prob(#sat<x)
- Effect 2: increase in HDOP, CCDF(x) = prob(HDOP>x)

Fig. 9 Distribution of #visible satellites (Kyoto).

Fig. 10 CCDF of HDOP
Experiment Result 2

- Investigating the correlation in signals received from common satellites
- 1: Correlation in SNR, $\text{CDF}(x) = \text{prob}(\Delta \text{SNR} > x)$
- 2: Correlation in the pseudo-range

Fig. 11 CCDF of SNR difference

Fig. 12 CCDF of correlation detection metric
Experiment Result 3

- Actual results of relative positioning
 - Currently Kalman filter is not used due to lack of speed info (speed pulse).
 - Correlation detection is not used.
 - We only show the effect of using common satellites

- The proposed scheme can effectively reduce positioning errors.

![Graphs showing distribution and CCDF of error in relative position](image-url)
Conclusion

• We argue that relative position is important in support system for safe driving.

• With a short inter-vehicle distance
 – Positioning signals received from common satellites tend to be correlated.
 – Exploiting all correlated signals, including reflected ones, helps to improve accuracy of relative position.

• Simulation and initial experiments confirmed the effectiveness of the proposed scheme.

• We have a plan to experiment in Osaka with real urban canyons.