Guide to GNSS Base stations

- Introduction
- Example of a base station (TUMSAT)
- Preparation for setting up a base station
- Procedure for setting up a base station
- Examples at two other universities

Based on documents:

- ✓ Introduction to GPS (Global Positioning System) by Leica
- ✓ GPS Reference Stations and Networks An introductory guide by Leica
- ✓ Trimble NetR9 GNSS Reference Receiver User Guide

This guide describes and gives advice on how to set up a reference receiver for a base station.

Real time correction data Accuracy 10 m \rightarrow 2 cm (RTK) Many of the errors affecting satellite range measurements can be removed using differential techniques. Α reference receiver antenna is mounted at a location whose coordinates are already known. Because it is at a known point, the reference receiver can estimate very precisely what the ranges to each visible satellite should be. A reference receiver can therefore calculate the differences between the computed (theoretical) ranges and those that measured by the reference are receiver. These differences are known as corrections.

Example of Base Station at TUMSAT (Tokyo University of Marine Science and Technology)

Cable

Receiver

Top floor of the building (our lab is there)

Receiver (Trimble NetR9)

- Built-in battery and memory
- ✓ Suited for Continuously Operating Reference Station (CORS)
- ✓ Supports NTRIP Server

This base station has been operated for 5 - 10 years.

- 1. Selecting a suitable site
- 2. Selecting equipment
 - GNSS receivers
 - GNSS antennas
 - Antenna cables
- 3. Power supply and network
- 4. Conclusion

1. Selecting a suitable site

Requirements for a base station

- Able to continuously log reliable data
 - Equipment and cables need to be stable
- No obstacles limit the data quality
 - Obstacles that cause loss of satellite signals
 - Obstacles that generate multipath signals
- Known antenna position (e.g., close to another base station)
 - To provide highly accurate correction data

1. Selecting a suitable site

Requirements for base station site:

- Open view of the sky
- No objects in the vicinity
- No other transmitters near GNSS frequencies
- Power and communication
- Structures to house and protect the equipment
- A stable mount for the antenna (e.g., on the roof of a building)
- Accessibility for inspection and maintenance

2. Selecting equipment

2. Selecting equipment

- Selecting suitable receivers and antennas for your objective
 - Dual or single frequency
 - Multi-GNSS or GPS-only satellite constellations
 - Multiple types of observation
 - Cost

Trimble NetR9 GNSS Reference Receiver

- ✓ Built-in battery and memory
- ✓ Suited for Continuously Operating Reference Station (CORS)
- ✓ Supports NTRIP Server

Trimble Zephyr Geodetic Antenna Trimble Zephyr Geodetic Antenna

- ✓ Technology for multipath reduction
- ✓ Supports multiple satellite signals
- ✓ Sub-millimeter phase center repeatability
- ✓ 5/8" x 11 female threaded stainless steel mounting point
- ✓ TNC-type female connecter for connecting to the antenna

2. Equipment for antenna

✓ Pillar

- Solid foundation (e.g., bedrock), suitably designed
- Provides reliable power and communication
- Supports the receiver, power supply and communication devices
- **Provides security**

TUMSAT

Holds antenna horizontally

Univ. of Philippines

Chulalongkorn Univ.

2. Equipment for antenna

Pillar or pole

to mount the

antenna

✓ Pole

- Using a 5/8" x 11 male threaded stainless steel mounting point fixed firmly in position
- Attaching a pole or console to a wall, etc.

Universitas Indonesia

5/8" x 11 female threaded stainless steel mounting point

Pole to mount the antenna fixed to the wall of the rooftop

3. Power supply and network

- GNSS base station needs a reliable, continuous power supply.
 - NetR9 receiver includes an internal battery that lasts for several hours
 - No need for UPS
- To provide real-time correction data via the internet
 - Fixed Global IP address
 - Continuous internet network
- To set up and configure the receiver, a PC with an Ethernet port is required.

Conclusion – check list for preparation

- Selecting a suitable site
 - Is a rooftop available?
 - Are there any significant obstacles?
 - Are there any other transmitters near the GNSS bands?
 - Is a pillar or a pole used? Is it stable?
 - How long is the distance between the antenna and the receiver housing?
- Selecting suitable equipment
 - Receiver and antenna combination
 - Are the cables of sufficient length?
 - In Line Amplifiers for extension cables (as needed)
 - How safely positioned is each piece of equipment?
 - Are continuous power and network resources available?
 - Will you be able to obtain a very accurate pre-surveyed position of the base station?

6. Obtaining the base station position

Overview of equipment connections

2. Setting up the antenna

Case1. Pillar (Example at TUMSAT)

 Set the foundation structure on the rooftop of the building.
The foundation structure is made of stainless steel and is heavy.

2. Antenna cable Cable is installed inside the pillar for security and to protect against wind. 5/8" x 11 female screw

5/8" x 11 male threaded stainless steel mounting point

Fix the antenna
With stainless steel mount for the foundation structure.

4. Finish antenna setup. Then connect to the cable.

2. Setting up the antenna

Case2. Pole (Example at Universitas Indonesia)

Setup site: No Obstacles

2. Setting up the antenna

Case2. Pole (Example at Universitas Indonesia)

 Install the pole on the rooftop of the building.
Fixed to the wall.
Antenna cable is already well fixed to the wall.

2. Install a metal structure to secure the top of the pole.

Check points for equipment setup

- For the antenna
 - Is the antenna foundation installed in a stable manner?
 - Is the antenna installed horizontally?
- For the antenna cable
 - Does the cable have plenty of length and flexibility? Is there any stress in the cable?
 - Is the cable well secured against the wind?
 - Are the joints well sealed against water?
 - Antenna-to-cable, cable-to-cable, the point where the cable enters the receiver housing.
- Other items
 - In Line amplifiers for the extension cables, if needed
 - Lightning protection

5. Receiver configuration settings

5. Receiver configuration settings

User Guide

http://trl.trimble.com/docushare/dsweb/Get/Document-495804/NetR9_UserGuide_13506.pdf

	/	
Button	Name	Function
0	Power	Turn on or turn off the receiver.
ž		To turn off the receiver, hold down for two seconds.
65	Escape	Return to the previous screen or cancel changes you make on a screen.
Θ	Enter	Advance to the next screen or accept changes you make on a screen.
\bigcirc	Up	Move the cursor between multiple fields on a screen, or make changes.
\bigcirc	Down	Move the cursor between multiple fields on a screen, or make changes
~	Down	move the cursor between multiple nets on a screen, or make changes.
0	Left	Move the cursor between characters in an editable field.
Ø	Right	Move the cursor between characters in an editable field.
\sim		Initiate edit mode for the current field.

- Power on and check the display
 - SV # is the number of received satellites. If the antenna is connected well, more than 10 satellites will be able to be received.
- Connect to the PC
 - The receiver Ethernet port connects to an Ethernet network, over you can configure and monitor the receiver.
 - The default setting of the receiver is to use DHCP. This enables the receiver to automatically obtain an IP address.
 - When the receiver is connected to a network using DHCP, the network assigns the receiver an IP address. To verify this address, open the Home screen and then press

5. Receiver configuration settings

User Guide

http://trl.trimble.com/docushare/dsweb/Get/Document-495804/NetR9_UserGuide_13506.pdf

- 1. On the PC, enter the IP address of the receiver into the address bar of a web browser, then press <Enter>
- 2. Proceed to configure the receiver status and monitor

Example 1. Satellites-> Tracking(Skyplot) Example 2. Recover configuration -> Tracking

> Trimble - 2016-07-26T04:1 ×						
← → C	P add	lress			ବ୍ 🚖 🔮	
Tracking	G G C				3-Trimhl	NetR9
					₽ ₆ II IIII0I	• 5245K53320
0	Elevation N	ask0 °				^
Receiver Status	Everes	t TM Enable	-			
Satellites	Clock Stee	ring Enable	-			
Data Logging	Туре	Signal	Enable	Options		
Receiver Configuration	GPS	L1 - C/A				
Summary	GPS	L2E	1	L2C and L2E 🔻		
Antenna Reference Station	GPS	L2C	1	CM + CL 🔻		
Tracking	GPS	L5	1	+Q •		
Correction Controls	SBAS	L1 - C/A				
Position	SBAS	L5				
Ceneral	GLONASS	L1 - C/A	4			
Application Files	GLONASS	L1P	1			
Reset	GLONASS	L2 - C/A	1	L2 - C/A(M) Only 🔻]	
Default Language	GLONASS	L3	1	Data + Pilot 🔻		
I/O Configuration	Galileo	E1	1			
Bluetooth	Galileo	E5 - A	1			
OmniSTAR	Galileo	E5 - B	1			
Network Configuration	Galileo	E5 - AltBOC	1			
Security	BeiDou	B1	4			
Firmware	BeiDou	B2	1			
Brogrammatic Interface	QZSS	L1 - C/A	¢.			
	QZSS	L1 - SAIF	1			
нер	QZSS	L1C	1			
	QZSS	L2C	1			
			1	1		*

5. Receiver configuration settings

User Guide http://trl.trimble.com/docushare/dsweb/Get/Document-495804/NetR9_UserGuide_13506.pdf

Do not forget to check the signal strength of received satellites

If the antenna is connected well, the maximum C/N₀ (Carrier to Noise ratio) for the GPS L1 C/A-code signal will be approximately 50 dB-Hz

Example of TUMSAT base station Satellites ->Tracking (Table)

S Trimble - 2016-07-26T04:2 X													
← → C	P	a	hh	Ire	22				ପ୍ ଟ	3	9	-	
Satellites - Tra	cki	nd	In	forr	nati	٥r						_	NotD9
outenites - nu		''y			nau		. () 🔤 🖞	s, Ir	Im	ble	524	5K5332(
	_												
	AL	-	FS Elev.	GLONA Azim.	SS Ga	lileo	BeiDo	u QZSS	SBAS L5-C/No	S C	OMNI	URA	-
Receiver Status	sv	Type	[Deg]	[Deg]	[dBHz]	11	[dBHz]	L2	[dBHz]	L5	IODE	[m]	Type
Satellites	1	GPS	75.31	247.65	48.8	CA	41.5/50.7	E/CM+CL	54.6	I+Q	43	2	IIF
General	3	GPS	18.93	172.46	41.3	CA	22.5/40.3	E/CM+CL	43.9	I+Q	99	2	IIF
Tracking (Table)	7	GPS	30.40	235.60	44.0	CA	31.7/41.3	E/CM+CL	-	-	77	2	IIR-M
Tracking (Graph)	8	GPS	52.48	57.37	49.0	CA	38.3/48.6	E/CM+CL	52.3	I+Q	74	2	IIF
Tracking (SkyPlot)	10	GPS	10.76	39.92	34.5	CA	18.6/39.6	E/CM+CL	43.2	I+Q	2	2	IIF
Enable/Disable	11	GPS	76.51	330.58	46.9	CA	38.5	E	-	-	83	2.8	IIR
Satellite Almanacs	16	GPS	11.77	138.12	36.9	CA	19.9	E	-	-	106	2	IIR
Predicted Elevation	17	GPS	2.18	279.71	-	-	-	-	-	-	-	-	IIR-M
Predicted Constellation	22	GPS	35.71	152.56	45.8	CA	33.5	E	-	-	33	2	IIR
Current Constellation	27	GPS	21.95	81.67	41.5	CA	28.5/42.4	E/CM+CL	46.8	I+Q	1	2	IIF
Bise/Set (Table)	28	GPS	26.74	317.56	43.3	CA	26.3	E	-	-	53	2.8	IIR
Rise/Set (Graph)	30	GPS	33.13	267.70	45.2	CA	32.2/44.7	E/CM+CL	49.6	I+Q	40	2	IIF
ruse/set (stupi)						_				_			
Data Logging	201	6-0	7-261	F04:24	4:20Z (UT	C)						
Receiver Configuration													
I/O Configuration													
Bluetooth													
OmniSTAR													

Example of TUMSAT base station Satellites ->Tracking (Graph)

5. Receiver configuration settings

User Guide

http://trl.trimble.com/docushare/dsweb/Get/Document-495804/NetR9_UserGuide_13506.pdf

- Data Logging
 - For data logging to obtain raw data for post-processed RTK positioning.
- I/O Configuration
 - For streaming correction messages from the base station (to rovers)
 - To set up all receiver outputs and inputs. The receiver can output several correction message formats.

Configuration			
Туре	Port	Input	Output
тсрир	5017		RT27(1Hz)
ТСРЛР	5019		
UDP	9750		-
TCP/IP	14999		NMEA-GGA(5 Sec.)
TCP/IP	28001		
TCP/IP	20002		
NTRIP Client	155.63.159.60.29004/VRS_CMRx	CMR	NMEA-GGA(5 Sec.)
NTRIP Server			
NTRIP Caster 1	2101	-	
NTRIP Caster 2	2102		
NTRIP Caster 3	2103		
Serial	Serial 1 (38.4K-8N1)		
Serial	Serial 2 (38.4K-8N1)	-	-
Bluetooth	1		
Bluetooth	2		
Bluetooth	3		-
USB			