

GNSS Logger Unit with RTKLIB

Tiphat Areeyapinun Shizuoka University

Contents

- Introduction
 - Objective
 - Complement of logger
- How to build?
- How to use?
- Experiment
- Future work and contact

Objective

- To record the GNSS data directly from module for post processing
- Small footprint and easy to use
- Use RTKLIB as base software

Why we choose Raspberry PI?

- Mainstream product
- Easy to use and maintenance
- RTKLIB, Just compile and GO!!
- A lot of integrate module available in Market

- RAW output available (RAWX and SFRBX)
- Reasonable price
- Multiple GNSS support

Complement of Logger

- Raspberry Pi (B+, 2 and 3)
- Ublox M8T
- LCD Monitor
- USB cable
- Antenna
- USB Drive (Fat32)

Complement of Logger (2)

Logger Data Flow

Logger function with STR2STR

- This logger unit use STR2STR, one of the application on RTKLIB. Its available on windows as STRSVR
- By the function of STR2STR, we record data directly from receiver to file (store over USB drive)

How to build?

Narrow down to 3 step

- 1. Raspberry Pi preparation
- 2. Receiver preparation
- 3. Software preparation

- Any version of Raspberry Pi can be use in this project.
 (B+, 2 and 3)
- In order to gain OS performance, newer version of board is better. (Model B+ use single core 700MHz compare to model 2 and 3 quad core at higher speed)
- But you need to be careful about environment temperature of your experiment, by newer CPU, generate more temperature. This can cause system overheat and auto shutdown
- Comparison of Raspberry Pi available on next slide

Generation	B+	2 3				
Release date	July, 2014	February, 2015	February, 2016			
Price	25 USD	35 USD	35 USD			
Architecture	ARMv6 (32-bit)	ARMv7 (32-bit)	ARMv8 (64/32-bit)			
CPU	Single core 700MHz	Quad core 900MHz	Quad core 1200MHz			
Memory	512MB	1GB				
USB	4 Ports					
Network	10/100	10/100 Lan Port, Wifi				
Power	600mA (3W)	800mA (4W)	1400mA (7W)			

https://ja.wikipedia.org/wiki/Raspberry_Pi

- We recommend you to use Raspberry Pi 2 by balance of performance and consumption power
- This model capable to modify to Navigation unit as well

- Tested Operating system that can run RTKLIB are Raspbian and Ubuntu Mate
- Install the OS on SD card (8GB or over)
- Follow the default step of installation

 You can install the board on any case. On this project we used clear case

Case for Raspberry Pi 3 Model B/ Raspberry Pi 2 Model B/ Pi Model B+ https://www.amazon.co.jp/dp/B01CDUM3D6/ref=pe_492632_227730602_TE_item Price at 790Yen/case

- LCD Screen for display information, we used Adafruit 2.4" 320x240 TFT
- Please soldering 40 female pin to LCD board for connect to Raspberry Pi

https://www.amazon.co .jp/dp/B019IBEMK0 Price at 5527yen/unit

http://www.marutsu.co. jp/pc/i/574345/ Price at 4350yen + tax

 Connect LCD board to Raspberry Pi board via 40 GPIO Pin

Receiver preparation

- Check the firmware of M8T, update to the new version (Current 3.01).
 For make receiver support Galileo satellite
- In this project we use 4 GNSS satellites. GPS, QZSS, Beidou and Galileo

UBLOX NEO-M8T TIME & RAW receiver board with SMA (RTK ready) http://www.csgshop.com/product.php?id_product=205 Price at 74.99USD/Unit

Receiver preparation

- The setting in receiver depend on what data you want to output and record
- In our project we use those setting below
 - NMEA and RAW output via USB
 - GPS, Galileo, QZSS and Beidou
 - 5Hz data output

Software preparation

- Pre OS configuration
- RTKLIB software installation
- CLI mode configuration
- LCD monitor setup
- USB drive configuration
- Auto-start script configuration
- Trigger OS shutdown by USB

Pre Operating System configuration

- Expand the disk file system
 - Open Menu → Preferences → Raspberry Pi
 Configuration
 - Select "Expand Filesystem" then restart the system

RTKLIB software installation

- Download RTKLIB software from GITHUB (2.4.3 or greater)
- Unzip and go to "RTKLIB-Master¥app" directory
- Execute "sudo chmod 755 makeall.sh" command
- Execute "sudo ./makeall.sh" and wait until it complete

Software preparation

23

CLI mode configuration

- Open Menu →
 Preferences → Raspberry
 Pi Configuration
- From the "System" tab, you can simply click the radio button next to "To CLI" to change the boot preference.
- Then reboot to CLI

System	Interfaces	Performance Localisation
Filesystem:		Expand Filesystem
Password:		Change Password
Hostname:		raspberrypi
Boot:		O To Desktop 💿 To Cl.
Auto login:		Login as us. Boot
Overscan:		Enabled Disabled
Rastrack:		Add to Rastrack
		Cancel OK

LCD Monitor Setup

- At console prompt, install new kernel by type commands below
 - \$curl -SLs https://apt.adafruit.com/add-pin | sudo bash
 - \$sudo apt-get install raspberrypi-bootloader
 - \$sudo apt-get install adafruit-pitft-helper

LCD Monitor Setup (2)

• Enable & Configure the PiTFT

\$sudo adafruit-pitft-helper -t 28r

• At the end you will be prompted on whether you want the text console to appear on the LCD Screen. Answer Y to continue.

Software preparation

USB Drive Configuration

- Prepare USB drive using FAT32 file format
- Create mount point on Raspberry Pi by those commands below
 - \$ sudo mkdir /media/usb
 - \$ sudo chown -R pi:pi /media/usb

Software preparation

Auto-start script configuration

This allow STR2STR to auto-start when system boot completed

Edit "rc.local" by type this command below \$ sudo nano /etc/rc.local

		🔲 Desktop — pi@ra	ispberrypi: ~ — ssn — .	110×32		12
GNU nano 2.2.6		File: /etc/ro	.local		Modifie	ed 🔳
<pre>#!/bin/sh -e # # rc.local # This script is e # Make sure that i # value on error. # In order to enat # bits. # By default this # Print the IP add </pre>	executed at the e the script will ' ole or disable th script does noth dress	end of each multius 'exit O" on success his script just cha hing.	er runlevel. or any other unge the execution			
_IP=\$(nostname -1) if ["\$_IP"]; the printf "My IP ac fi	o true en ddress is %s\n" '	'\$_ IP"				
exit O						
^G Get Help ^X Exit	^O WriteOut <mark>^J</mark> Justify	^R Read File <mark>^₩</mark> Where Is	^Y Prev Page ^V Next Page	^K Cut Text ^U UnCut Text	^C Cur Pos ^T To Spell	

Auto-start script configuration (2)

• After the initial comments (lines beginning with '#') add those commands below.

sudo mount /dev/sda1 /media/usb -o uid=pi,gid=pi

cd /home/pi/RTKLIB-master/app/str2str/gcc/

sudo ./str2str -in serial://ttyACM0:57600#ubx –out file:///media/usb/\$(date +%Y%m%d-%H%M%S)

 First command will auto mount USB drive, Second will go to STR2STR directory and the last one will start STR2STR with writing the output to USB drive

Trigger OS shutdown by USB

- As the logger unit has no keyboard when operating on field.
- We add more script to be trigger for shutdown process. By disconnect receiver from Raspberry Pi.
- To protect the output file from EOF problem.

Trigger OS shutdown by USB (2)

 At console, Get information about the device via "lsusb"

(The third field labelled ID is the vendor and model id separated by a colon)

2. Create a file in /etc/udev/rules.d

(This is the same regardless of distribution. The file must end in .rules and all files in this directory are processed lexicographically. Such as 00-XXX.rules)

Trigger OS shutdown by USB (3)

3. Edit the created file as below

ACTION=="remove", ENV{ID_VENDOR_ID}=="XXXX", ENV{ID_MODEL_ID}=="XXXX", RUN+="/sbin/shutdown -h now"Create a file in /etc/udev/rules.d

- 4. Run command "udevadm control --reload-rules" to take effect.
- 5. System is now ready to use as Logger unit.

How to use?

We divide into 3 steps

- 1. Prepare and Start system
- 2. Shutdown system
- 3. Access the record file

Prepare and Start system

 Plug Ublox Neo-M8T unit (via USB) and USB drive to logger unit

Prepare and Start system

- 35
- Plug power cable to logger unit (USB2.0 cable from power adapter or power bank)

Prepare and Start system

• Logger system will start automatically as picture below.

(In case that system cannot start or boot to terminal prompt, please check M8T and USB drive are plug to the system correctly or not, then reboot the system again)

Shutdown system

• When you done the experiment, please unplug the Ublox Neo-M8T from logger unit and system will start to shutdown automatically

Shutdown system

 The last state of shutdown system is "Reached target Shutdown" then you can remove power cable

Access the record file

- When you shutdown unit, record file will available in the USB drive. Filename will be written by the time of Raspberry PI system, please check the actual time inside the file again (GPST)
- As the script configuration, file will not has the extension

Access the record file

- Recorded file UBX can be review from ucenter application provided by Ublox.
- From here, you can briefly review data and position in map view

Experiment

- We conducted an experiment using logger unit in Laboratory work, Hamamatsu and Summer camp in Thailand recently.
- At Summer camp, we collect data and did the post processing by using TUMSAT base station data

Summer Camp Experiment

Rover (Logger Unit)

Base station setup by TUMSAT

Experiment result (RTK Plot)

Experiment result (Crop some area)

- Study and develop the prototype for more efficiency.
- Gathering the record data for improve my research

Contact point

• Professor Tomoya Kitani

t-kitani@inf.shizuoka.ac.jp, t-kitani@kitanilab.org

• Tiphat Areeyapinun

gs15701@s.inf.shizuoka.ac.jp, tiphat-a@kitanilab.org

 Kitani Laboratory, Department of Informatics, Shizuoka University